版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届青海师大二附中高一上数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在下列各区间上,函数是单调递增的是A. B.C. D.2.已知集合,,若,则的子集个数为A.14 B.15C.16 D.323.某四面体的三视图如图,则该四面体的体积是A.1 B.C. D.24.已知角的顶点与原点重合,它的始边与轴的非负半轴重合,它的终边上一点坐标为,.则为()A. B.C. D.5.函数的最大值与最小值分别为()A.3,-1 B.3,-2C.2,-1 D.2,-26.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为A.π B.πC.4π D.π7.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.8.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A. B.C. D.9.已知函数f(x)=Acos(ωx+φ)的图像如图所示,,则f(0)=()A. B.C. D.10.已知角的终边与单位圆的交点为,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若则函数的最小值为________12.函数的值域为_____________13.给出下列四个结论:①函数是奇函数;②将函数的图象向右平移个单位长度,可以得到函数的图象;③若是第一象限角且,则;④已知函数,其中是正整数.若对任意实数都有,则的最小值是4其中所有正确结论的序号是________14.若角的终边与角的终边相同,则在内与角的终边相同的角是______15.锐角中,分别为内角的对边,已知,,,则的面积为__________16.不等式的解集为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某公园摩天轮的半径为40,圆心O距地面的高度为50,摩天轮做匀速转动,每3转一圈,摩天轮上的点P的起始位置在距地面最近处.(1)已知在时点P距离地面的高度为,求时,点P距离地面的高度;(2)当离地面以上时,可以看到公园的全貌,求转一圈中在点P处有多少时间可以看到公园的全貌.18.已知集合,,(1)求;(2)若,求m取值范围19.设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;①;②.(2)设的定义域为,已知是的一个等值域变换,且函数的定义域为,求实数的值.20.已知函数(1)求函数的最小正周期和单调递减区间;(2)将函数的图像向左平移单位长度,再将所得图像上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图像,求在上的值域21.已知,是夹角为的两个单位向量,且向量,求:,,;向量与夹角的余弦值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据选项的自变量范围判断函数的单调区间即可.【详解】当时,,由正弦函数单调性知,函数单增区间应满足,即,观察选项可知,是函数的单增区间,其余均不是,故选:C2、C【解析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C3、B【解析】在正方体ABCDA1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1BCB1,如图所示,该四面体的体积为.故选B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图4、D【解析】根据正弦函数的定义可得选项.【详解】的终边上有一点,,.故选:D.5、D【解析】分析:将化为,令,可得关于t的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,设,则,根据二次函数性质当时,y取最大值2,当时,y取最小值.故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为的形式,用换元法求解;另一种是将解析式化为的形式,根据角的范围求解.6、B【解析】球半径,所以球的体积为,选B.7、B【解析】根据三视图画出原图,从而计算出最长的棱长.【详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B8、B【解析】根据集合交集的定义可得所求结果【详解】∵,∴故选B【点睛】本题考查集合的交集运算,解题的关键是弄清两集合交集中元素的特征,进而得到所求集合,属于基础题9、C【解析】根据所给图象求出函数的解析式,即可求出.【详解】设函数的周期为,由图像可知,则,故ω=3,将代入解析式得,则,所以,令,代入解析式得,又因为,解得,,.故选:C.【点睛】本题考查根据三角函数的部分图象求函数的解析式,属于基础题.10、A【解析】利用三角函数的定义得出和的值,由此可计算出的值.【详解】由三角函数的定义得,,因此,.故选:A.【点睛】本题考查三角函数的定义,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】结合图象可得答案.【详解】如图,函数在同一坐标系中,且,所以在时有最小值,即.故答案为:1.12、【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题13、①②④【解析】直接利用奇函数的定义,函数图象的平移变换,象限角,三角函数的恒等变换以及余弦函数图像的性质即可判断.【详解】对于①,其中,即为奇函数,则①正确;对于②将的图象向右平移个单位长度,即,则②正确;对于③若令,,则,则③不正确;对于④,由题意可知,任意一个长为的开区间上至少包含函数的一个周期,的周期为,则,即,则的最小值是4,则④正确;故答案为:①②④.14、【解析】根据角的终边与角的终边相同,得到,再得到,然后由列式,根据,可得整数的值,从而可得.【详解】∵(),∴()依题意,得(),解得(),∴,∴在内与角的终边相同的角为故答案为【点睛】本题考查了终边相同的角的表示,属于基础题.15、【解析】由已知条件可得,,再由正弦定理可得,从而根据三角形内角和定理即可求得,从而利用公式即可得到答案.【详解】,由得,又为锐角三角形,,又,即,解得,.由正弦定理可得,解得,又,,故答案为.【点睛】三角形面积公式的应用原则:(1)对于面积公式S=absinC=acsinB=bcsinA,一般是已知哪一个角就使用哪一个公式(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化16、【解析】将不等式转化为,利用指数函数的单调性求解.【详解】不等式为,即,解得,所以不等式的解集为,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)70;(2)0.5.【解析】(1)根据题意,确定的表达式,代入运算即可;(2)要求,即,解不等式即可.【详解】(1)依题意,,,,由得,所以.因为,所以,又,所以.所以,所以.即时点P距离地面的高度为70m.(2)由(1)知.令,即,从而,∴.∵,∴转一圈中在点P处有0.5min的时间可以看到公园的全貌.【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题18、(1)(2)【解析】(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;(2)根据条件建立不等式组,可求得所求的范围.【小问1详解】因为,,所以,【小问2详解】因,所以解得.故m的取值范围是19、(1)①不是等值域变换,②是等值域变换;(2).【解析】(1)运用对数函数的值域和基本不等式,结合新定义即可判断①;运用二次函数的值域和指数函数的值域,结合新定义即可判断②;(2)利用f(x)的定义域,求得值域,根据x的表达式,和t值域建立不等式,利用存在t1,t2∈R使两个等号分别成立,求得m和n试题解析:(1)①,x>0,值域为R,,t>0,由g(t)⩾2可得y=f[g(t)]的值域为[1,+∞).则x=g(t)不是函数y=f(x)的一个等值域变换;②,即的值域为,当时,,即的值域仍为,所以是的一个等值域变换,故①不是等值域变换,②是等值域变换;(2)定义域为,因为是的一个等值域变换,且函数的定义域为,的值域为,,恒有,解得20、(1)最小正周期为,单调递减区间为,;(2).【解析】(1)利用二倍角正余弦公式及辅助角公式可得,再根据正弦型函数的性质求最小正周期和递减区间.(2)由(1)及图象平移有,应用整体法及正弦函数的性质求区间值域.【小问1详解】由题设,,所以的最小正周期为,令,,解得,,因此,函数的单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版版权买卖合同的交付与支付条款2篇
- 电动门订购安装合同
- 代为垫付研发费用的协议(04版)
- VI设计合同书范本
- 二手房地产交易信息化服务合同
- 北京市某打桩公司2024年度承包合同
- 2024年度计算机软件开发与应用合同2篇
- 二零二四年度物业管理服务合同(综合版)
- 二零二四年风力发电项目开发与合作合同
- 二零二四年度建筑材料采购与贷款协议3篇
- 肿瘤病人临终关怀护理
- 网格员工作汇报 (第二稿)
- 2024年医学高级职称-皮肤与性病学(医学高级)笔试历年真题荟萃含答案
- 国家治理现代化的理论框架及其构建
- 2024年保密法培训课件
- 应用心理学博士研究计划书
- T-NAHIEM 98-2023 病理科(中心)建设与配置标准
- 基于层次分析法的建筑工程项目成本管理-
- 汶川大地震地震报告
- 《物资编码基础知识》课件
- 食品检验检测培训课件
评论
0/150
提交评论