山东省菏泽市2025届高二上数学期末经典模拟试题含解析_第1页
山东省菏泽市2025届高二上数学期末经典模拟试题含解析_第2页
山东省菏泽市2025届高二上数学期末经典模拟试题含解析_第3页
山东省菏泽市2025届高二上数学期末经典模拟试题含解析_第4页
山东省菏泽市2025届高二上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省菏泽市2025届高二上数学期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.不等式的解集是()A. B.C.或 D.或2.已知正方形的四个顶点都在椭圆上,若的焦点F在正方形的外面,则的离心率的取值范围是()A. B.C. D.3.的三个内角A,B,C所对的边分别为a,b,c,若,则()A. B.C. D.4.如图,奥运五环由5个奥林匹克环套接组成,环从左到右互相套接,上面是蓝、黑、红环,下面是黄,绿环,整个造形为一个底部小的规则梯形.为迎接北京冬奥会召开,某机构定制一批奥运五环旗,已知该五环旗的5个奥林匹克环的内圈半径为1,外圈半径为1.2,相邻圆环圆心水平距离为2.6,两排圆环圆心垂直距离为1.1,则相邻两个相交的圆的圆心之间的距离为()A. B.2.8C. D.2.95.一组样本数据:,,,,,由最小二乘法求得线性回归方程为,若,则实数m的值为()A.5 B.6C.7 D.86.双曲线的左焦点到其渐近线的距离是()A. B.C. D.7.定义域为的函数满足,且的导函数,则满足的的集合为A. B.C. D.8.如图,过抛物线的焦点的直线交抛物线于点、,交其准线于点,若,且,则的值为()A. B.C. D.9.某中学举行党史学习教育知识竞赛,甲队有、、、、、共名选手其中名男生名女生,按比赛规则,比赛时现场从中随机抽出名选手答题,则至少有名女同学被选中的概率是()A. B.C. D.10.已知集合,则()A. B.C. D.11.(2016新课标全国Ⅱ理科)已知F1,F2是双曲线E:的左,右焦点,点M在E上,MF1与轴垂直,sin,则E的离心率为A. B.C. D.212.已知双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正数、满足,则的最大值为__________14.已知正方体的棱长为2,E为线段中点,F为线段BC上动点,则(1)的最小值为______;(2)点F到直线DE距离的最小值为______.15.在的展开式中项的系数为______.(结果用数值表示)16.设,若直线与直线平行,则的值是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设,为双曲线:(,)的左、右顶点,直线过右焦点且与双曲线的右支交于,两点,当直线垂直于轴时,△为等腰直角三角形(1)求双曲线的离心率;(2)若双曲线左支上任意一点到右焦点点距离的最小值为3,①求双曲线方程;②已知直线,分别交直线于,两点,当直线倾斜角变化时,以为直径的圆是否过轴上的定点,若过定点,求出定点的坐标;若不过定点,请说明理由18.(12分)已知在△ABC中,角A,B,C的对边分别为a,b,c,且(1)求C;(2)若,求的最大值19.(12分)设双曲线的左、右焦点分别为,,且,一条渐近线的倾斜角为60°(1)求双曲线C的标准方程和离心率;(2)求分别以,为左、右顶点,短轴长等于双曲线虚轴长的椭圆的标准方程20.(12分)已知函数(Ⅰ)解关于的不等式;(Ⅱ)若关于的不等式恒成立,求实数的取值范围21.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程22.(10分)已知椭圆:过点,其左、右顶点分别为,,上顶点为,直线与直线的斜率之积为.(1)求椭圆的方程;(2)如图,直线:分别与线段(不含端点)和线段的延长线交于,两点,直线与椭圆的另一交点为,求证:,,三点共线.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】确定对应二次方程的解,根据三个二次的关系写出不等式的解集【详解】,即为,故选:A2、C【解析】如图由题可得,进而可得,即求.【详解】如图根据对称性,点D在直线y=x上,可设,则,∴,可得,,即,又解得.故选:C.3、D【解析】利用正弦定理边化角,角化边计算即可.【详解】由正弦定理边化角得,,再由正弦定理角化边得,即故选:D.4、C【解析】根据题意作出辅助线直接求解即可.【详解】如图所示,由题意可知,在中,取的中点,连接,所以,,又因为,所以,所以即相邻两个相交的圆的圆心之间的距离为.故选:C5、B【解析】求出样本的中心点,再利用回归直线必过样本的中心点计算作答.【详解】依题意,,则这个样本的中心点为,因此,,解得,所以实数m的值为6.故选:B6、A【解析】求出双曲线焦点坐标与渐近线方程,利用点到直线的距离公式可求得结果.【详解】在双曲线中,,,,所以,该双曲线的左焦点坐标为,渐近线方程为,即,因,该双曲线的左焦点到渐近线的距离为.故选:A7、B【解析】利用2f(x)<x+1构造函数g(x)=2f(x)-x-1,进而可得g′(x)=2f′(x)-1>0.得出g(x)的单调性结合g(1)=0即可解出【详解】令g(x)=2f(x)-x-1.因为f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)单调增函数因为f(1)=1,所以g(1)=2f(1)-1-1=0.所以当x<1时,g(x)<0,即2f(x)<x+1.故选B.【点睛】本题主要考察导数的运算以及构造函数利用其单调性解不等式.属于中档题8、B【解析】分别过点、作准线的垂线,垂足分别为点、,设,根据抛物线的定义以及直角三角形的性质可求得,结合已知条件求得,分析出为的中点,进而可得出,即可得解.【详解】如图,分别过点、作准线的垂线,垂足分别为点、,设,则由己知得,由抛物线的定义得,故,在直角三角形中,,,因为,则,从而得,所以,,则为的中点,从而.故选:B.9、D【解析】现场选名选手,共种情况,设,,,四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;【详解】现场选名选手,基本事件有:,,,,,,,,,,,,,,共种情况,不妨设,,,四位同学为男同学则没有女同学被选中的情况是:,,,,,共种,则至少有一名女同学被选中的概率为.故选:.10、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.11、A【解析】由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.12、B【解析】由双曲线的渐近线方程以及即可求得离心率.【详解】由已知条件得,∴,∴,∴,∴,故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为【点睛】本题考查了均值不等式,意在考查学生的计算能力.14、①.;②..【解析】建立空间直角坐标系.空一:利用空间两点间距离公式,结合平面两点间距离公式进行求解即可;空二:根据空间向量垂直的性质进行求解即可.【详解】建立如图所示的空间直角坐标系,则有.空一:,代数式表示横轴上一点到点和点的距离之和,如下图所示:设关于横轴的对称点为,当线段与横轴的交点为点时,有最小值,最小值为;空二:设,为垂足,则有,,,因为,所以,因此,化简得:,当时,即时,此时,有最小值,即最小值为,故答案为:;【点睛】关键点睛:利用空间向量垂直的性质进行求解是解题的关键.15、【解析】先求解出该二项式展开式的通项,然后求解出满足题意的项数值,带入通项即可求解出展开式的系数.【详解】展开式通项为,由题意,令,解得,,所以项的系数为.故答案为:.16、【解析】先通过讨论分成斜率存在和不存在两种情况,然后再按照两直线平行的判定方法求解即可.【详解】由已知可得,当时,两直线分别为和,此时,两直线不平行;当时,要使得两直线平行,即,解得,.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①;②定点有两个,【解析】(1)由双曲线方程有、、,根据已知条件有,即可求离心率.(2)①由题设有,结合(1)求双曲线参数,写出双曲线方程即可;②由题设可设为,,,联立双曲线方程结合韦达定理求,,,,再由、的方程求,坐标,若在为直径的圆上点,由结合向量垂直的坐标表示列方程,进而求出定点坐标.【小问1详解】由题设,若,且,又△为等腰直角三角形,∴,即,则又,可得.【小问2详解】由题设,,由(1)有,则,即,①由上可知:双曲线方程为.②由①知:,且直线的斜率不为0,设为,,,联立直线与双曲线得:,∴,,则,∴,∴直线为;直线为;∴,,若在为直径的圆上点,∴,且,∴,令,则,∴,即,∴或,即过定点.【点睛】关键点点睛:第二问的②,设直线为,联立直线与双曲线,应用韦达定理求,,,,进而根据、的方程求,坐标,再由圆的性质及向量垂直的坐标表示求定点坐标.18、(1);(2).【解析】(1)将题设条件化为,结合余弦定理即可知C的大小.(2)由(1)及正弦定理边角关系可得,再应用辅助角公式、正弦函数的性质即可求最大值.【小问1详解】由,得,即,由余弦定理得:,又,所以【小问2详解】由(1)知:,则,设△ABC外接圆半径为R,则,当时,取得最大值为19、(1),2(2)【解析】(1)结合,联立即得解;(2)由题意,即得解.【详解】(1)由题意,又解得:故双曲线C的标准方程为:,离心率为(2)由题意椭圆的焦点在轴上,设椭圆方程为故即椭圆方程为:20、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零点法去绝对值,然后再解不等式.(Ⅱ)将原函数转化为分段函数,再结合函数图像求得其最小值.将恒成立转化为试题解析:(Ⅰ)或或或所以原不等式解集为(Ⅱ),由函数图像可知,所以要使恒成立,只需考点:1绝对值不等式;2恒成立问题;3转化思想21、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论