2025届山东省聊城市莘县第一中学数学高一上期末达标检测试题含解析_第1页
2025届山东省聊城市莘县第一中学数学高一上期末达标检测试题含解析_第2页
2025届山东省聊城市莘县第一中学数学高一上期末达标检测试题含解析_第3页
2025届山东省聊城市莘县第一中学数学高一上期末达标检测试题含解析_第4页
2025届山东省聊城市莘县第一中学数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省聊城市莘县第一中学数学高一上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,,则()A.{2,3} B.{1,2,3}C.{2,3,4} D.{1,2,3,4}2.已知函数在区间上有且只有一个零点,则正实数的取值范围是()A. B.C. D.3.已知函数,则下列判断正确的是A.函数是奇函数,且在R上是增函数B.函数偶函数,且在R上是增函数C.函数是奇函数,且在R上是减函数D.函数是偶函数,且在R上是减函数4.已知函数是定义在R上的偶函数,且在上是单调递减的,设,,,则a,b,c的大小关系为()A. B.C. D.5.从数字中随机取两个不同的数,分别记为和,则为整数的概率是()A. B.C. D.6.下列命题正确的是A.在空间中两条直线没有公共点,则这两条直线平行B.一条直线与一个平面可能有无数个公共点C.经过空间任意三点可以确定一个平面D.若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行7.已知过点和的直线与斜率为一2的直线平行,则m的值是A.-8 B.0C.2 D.108.已知“”是“”的充分不必要条件,则k的取值范围为()A. B.C. D.9.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC10.已知集合,,则等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线平行,则实数的值为_______.12.已知tanα=3,则sinα(cosα-sinα)=______13.已知幂函数的图象过点,则_____________14.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______15.已知,则满足f(x)=的x的值为________16.已知角的终边过点,则_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂进行废气回收再利用,把二氧化硫转化为一种可利用的化工产品.已知该单位每月的处理量最少为200吨,最多为500吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化硫得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的月平均处理成本最低?(2)该工厂每月进行废气回收再利用能否获利?如果获利,求月最大利润;如果不获利,求月最大亏损额.18.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格(元)与时间(天)的函数关系是,日销售量(件)与时间(天)的函数关系是.(1)设该商品的日销售额为y元,请写出y与t的函数关系式;(商品的日销售额=该商品每件的销售价格×日销售量)(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大?19.脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?附:在中,其中为样本平均值.20.已知幂函数为偶函数(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围21.在平面直角坐标系中,已知点,,在圆上(1)求圆的方程;(2)过点的直线交圆于,两点.①若弦长,求直线的方程;②分别过点,作圆的切线,交于点,判断点在何种图形上运动,并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据集合的交集运算直接可得答案.【详解】集合,,则,故选:A.2、D【解析】将零点个数问题转化为两个函数图象的交点个数问题,通过对参数讨论作图可解.【详解】在区间上有且只有一个零点在区间上有且只有一个解,即在区间上有且只有一个解令,,当,即时,因为在上单调递减,在上单调递增且,,由图1知,此时函数与在上只有一个交点;当,即时,因为,所以要使函数与在上有且只有一个交点,由图2知,即,解得或(舍去).综上,的取值范围为.故选:D3、A【解析】求出的定义域,判断的奇偶性和单调性,进而可得解.【详解】的定义域为R,且;∴是奇函数;又和都是R上的增函数;是R上的增函数故选A【点睛】本题考查奇偶性的判断,考查了指数函数的单调性,属于基础题4、A【解析】先判断出上单调递增,由,即可得到答案.【详解】因为函数是定义在R上的偶函数,所以的图像关于y轴对称,且.又在上是单调递减的,所以在上单调递增.因为,,所以:,所以,即.故选:A5、B【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率.【详解】解:从数字中随机取两个不同的数,则有种选法,有种选法,共有种情况;则满足为整数的情况如下:当时,或有种情况;当时,有种情况;当或时,则不可能为整数,故共有种情况,故为整数的概率是:.故选:B.6、B【解析】根据平面的基本性质和空间中两直线的位置关系,逐一判定,即可得到答案【详解】由题意,对于A中,在空间中两条直线没有公共点,则这两条直线平行或异面,所以不正确;对于B中,当一条直线在平面内时,此时直线与平面可能有无数个公共点,所以是正确的;对于C中,经过空间不共线的三点可以确定一个平面,所以是错误的;对于D中,若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行或相交,所以不正确,故选B【点睛】本题主要考查了平面的基本性质和空间中两直线的位置关系,其中解答中熟记平面的基本性质和空间中两直线的位置关系是解答的关键,着重考查了推理与论证能力,属于基础题7、A【解析】由题意可知kAB==-2,所以m=-8.故选A8、C【解析】根据“”是“”的充分不必要条件,可知是解集的真子集,然后根据真子集关系求解出的取值范围.【详解】因为,所以或,所以解集为,又因为“”是“”的充分不必要条件,所以是的真子集,所以,故选:C.【点睛】结论点睛:一般可根据如下规则判断充分、必要条件:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分也不必要条件,则对应集合与对应集合互不包含.9、C【解析】由斜二测画法得到原三角形,结合其几何特征易得答案.【详解】由题意得到原△ABC的平面图为:其中,AD⊥BC,BD>DC,∴AB>AC>AD,∴△ABC的AB、AD、AC三条线段中最长的是AB,最短的是AD故选C【点睛】本题考查了斜二测画法,考查三角形中三条线段长的大小的比较,属于基础题10、A【解析】先解不等式,再由交集的定义求解即可【详解】由题,因为,所以,即,所以,故选:A【点睛】本题考查集合的交集运算,考查利用指数函数单调性解不等式二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据直线一般式,两直线平行则有,代入即可求解.【详解】由题意,直线与直线平行,则有故答案为:【点睛】本题考查直线一般式方程下的平行公式,属于基础题.12、【解析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查13、##【解析】设出幂函数解析式,代入已知点坐标求解【详解】设,由已知得,所以,故答案为:14、【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,,即所求二面角大小是.故答案为:15、3【解析】分和两种情况并结合分段函数的解析式求出x的值【详解】由题意得(1)或(2),由(1)得x=2,与x≤1矛盾,故舍去由(2)得x=3,符合x>1∴x=3故答案为3【点睛】已知分段函数的函数值求自变量的取值时,一般要进行分类讨论,根据自变量所在的范围选用相应的解析式进行求解,求解后要注意进行验证.本题同时还考查对数、指数的计算,属于基础题16、【解析】由三角函数定义可直接得到结果.【详解】的终边过点,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)400吨;(2)该工厂每月废气回收再利用不获利,月最大亏损额为27500元.【解析】(1)由题意可知,二氧化碳每吨的平均处理成本为,化简后再利用基本不等式即可求出最小值.(2)该单位每月获利为元,则,由的范围,利用二次函数的性质得到的范围即可得结论【详解】(1)由题意可知,二氧化碳每吨的平均处理成本为,当且仅当,即时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为150元.(2)不获利,设该单位每月获利为元,则,因为,所以时取最大值,时取最小值,所以.故该工厂每月废气回收再利用不获利,月最大亏损额为27500元.【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.18、(1);(2)日销售金额的最大值为900元,11月10日日销售金额最大【解析】(1)由日销售金额=每件的销售价格×日销售量可得;(2)利用二次函数的图像与性质可得结果.【详解】(1)设日销售额为元,则,所以即:(2)当时,,;当时,,故所求日销售金额的最大值为元,11月10日日销售金额最大.【点睛】本题主要考查了利用数学知识解决实际问题的能力,解题的关键是要把实际问题转化为数学问题,利用数学中二次函数的知识进行求解函数的最值.19、(Ⅰ);(Ⅱ)万元.【解析】(Ⅰ)利用题中所给数据和最小二乘法求出相关系数,进而求出线性回归方程;(Ⅱ)利用线性回归方程进行预测.试题解析:(Ⅰ)由题意知所以线性回归方程为(Ⅱ)令得由此可预测该农户的年收入最低为万元.20、(1);(2)或.【解析】(1)由为幂函数知,得或又因为函数为偶函数,所以函数不符合舍去当时,,符合题意;.(2)由(1)得,即函数的对称轴为,由题意知在(2,3)上为单调函数,所以或,即或.21、(1)(2)【解析】(1)设圆的方程为:,将点,,分别代入圆方程列方程组可解得,,,从而可得圆的方程;(2)①由(1)得圆的标准方程为,讨论两种情况,当直线的斜率存在时,设为,则的方程为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论