版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市长春汽车经济开发区第六中学2025届高二上数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点,的直线的斜率等于2,则的值为()A.0 B.1C.3 D.42.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.3.已知椭圆的离心率为,则()A. B.C. D.4.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.5.如图,在直三棱柱中,,,E是的中点,则直线BC与平面所成角的正弦值为()A. B.C. D.6.“”是“方程是圆的方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若直线与曲线有两个公共点,则实数的取值范围为()A. B.C. D.8.命题,,则是()A., B.,C., D.,9.“”是“直线与直线垂直”的A.充分必要条件 B.充分非必要条件C.必要不充分条件 D.既不充分也不必要条件10.设点是点,,关于平面的对称点,则()A.10 B.C. D.3811.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.12.抛物线准线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,的前项和为,则______.14.“直线和直线垂直”的充要条件是______15.双曲线的离心率为____16.在平面直角坐标系中,直线与的交点为,以为圆心作圆,圆上的点到轴的最小距离为(Ⅰ)求圆的标准方程;(Ⅱ)过点作圆的切线,求切线的方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C1圆心为坐标原点,且与直线相切(1)求圆C1的标准方程;(2)若直线l过点M(1,2),直线l被圆C1所截得的弦长为,求直线l的方程18.(12分)已知抛物线:的焦点为,直线与抛物线在第一象限的交点为,且(1)求抛物线的方程;(2)经过焦点作互相垂直的两条直线,,与抛物线相交于,两点,与抛物线相交于,两点.若,分别是线段,的中点,求的最小值19.(12分)公差不为零的等差数列中,已知其前n项和为,若,且成等比数列(1)求数列的通项;(2)当时,求数列的前n和20.(12分)在四棱锥中,平面,,,,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求直线与平面所成角的正弦值.21.(12分)在平面直角坐标系中,椭圆:的左顶点到右焦点的距离是3,离心率为(1)求椭圆的标准方程;(2)斜率为的直线经过椭圆的右焦点,且与椭圆相交于,两点.已知点,求的值22.(10分)已知向量,(1)求;(2)求;(3)若(),求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用斜率公式即求.【详解】由题可得,∴.故选:A2、B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B3、D【解析】由离心率及椭圆参数关系可得,进而可得.【详解】因为,则,所以.故选:D4、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.5、D【解析】以,,的方向分別为x轴、y轴、z轴的正方向,建立空间直角坐标系,利用向量法即可求出答案.【详解】解:由题意知,CA,CB,CC1两两垂直,以,,的方向分別为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则令,得.因为,所以,故直线BC与平面所成角的正弦值为.故选:D.6、A【解析】利用充分条件和必要条件的定义判断.【详解】若方程表示圆,则,即,解得或,故“”是“方程是圆的方程”的充分不必要条件,故选:A7、D【解析】由题可知,曲线表示一个半圆,结合半圆的图像和一次函数图像即可求出的取值范围.【详解】由得,画出图像如图:当直线与半圆O相切时,直线与半圆O有一个公共点,此时,,所以,由图可知,此时,所以,当直线如图过点A、B时,直线与半圆O刚好有两个公共点,此时,由图可知,当直线介于与之间时,直线与曲线有两个公共点,所以.故选:D.8、D【解析】根据特称命题的否定为全称命题,即可得到答案.【详解】因为命题,,所以,.故选:D9、B【解析】先由两直线垂直求出的值,再由充分条件与必要条件的概念,即可得出结果.【详解】因为直线与直线垂直,则,即,解得或;因此由“”能推出“直线与直线垂直”,反之不能推出,所以“”是“直线与直线垂直”的充分非必要条件.故选B【点睛】本题主要考查命题充分不必要条件的判定,熟记充分条件与必要条件的概念,以及两直线垂直的判定条件即可,属于常考题型.10、A【解析】写出点坐标,由对称性易得线段长【详解】点是点,,关于平面的对称点,的横标和纵标与相同,而竖标与相反,,,,直线与轴平行,,故选:A11、D【解析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【点睛】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.12、D【解析】由抛物线的准线方程即可求解【详解】由抛物线方程得:.所以,抛物线的准线方程为故选D【点睛】本题主要考查了抛物线的准线方程,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析出当为正奇数时,,可求得的值,再分析出当为正偶数时,,可求得的值,进而可求得的值.【详解】由题知,当为正奇数时,,于是,,,,,所以.又因为当为正偶数时,,且,所以两式相加可得,于是,两式相减得.所以,故.故答案为:.【点睛】关键点点睛:本题的解题关键在于分析出当为正奇数时,,以及当为正偶数时,,找出规律,结合并项求和法求出以及的值.14、或【解析】利用直线一般式方程表示垂直的方法求解.【详解】因为直线和直线垂直,所以,解得或;故答案为:或.15、【解析】由题意得:考点:双曲线离心率16、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出点的坐标,设圆的半径为,圆上的点到轴的最小距离为1求得的值,由此可得出圆的标准方程;(Ⅱ)对切线的斜率是否存在进行分类讨论,当切线的斜率不存在时,可得切线方程为,验证即可;当切线的斜率存在时,可设所求切线的方程为,利用圆心到切线的距离等于圆的半径可求得的值,综合可得出所求切线的方程.【详解】(Ⅰ)联立方程组,解得,即点设圆的半径为,由于圆上的点到轴的最小距离为,则,所以,故圆的标准方程为;(Ⅱ)若切线的斜率不存在,则所求切线的方程为,圆心到直线的距离为,不合乎题意;若切线的斜率存在,可设切线的方程为,即,圆的圆心坐标为,半径为,由题意可得,整理得,解得或故所求切线方程为或【点睛】本题考查圆的标准方程的求解,同时也考查了过圆外一点的圆的切线方程的求解,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)由圆心到直线的距离求得半径,可得圆C1的标准方程;(2)当直线的斜率不存在时,求得直线l被圆C1所截得的弦长为,符合题意;当直线l的斜率存在时,设出直线方程,由已知弦长可得圆心到直线的距离,再由点到直线的距离公式列式求k,则直线方程可求【小问1详解】∵原点O到直线的距离为,∴圆C1的标准方程为;【小问2详解】当直线l的斜率不存在时,直线方程为x=1,代入,得,即直线l被圆C1所截得的弦长为,符合题意;当直线l的斜率存在时,设直线方程为,即∵直线l被圆C1所截得的弦长为,圆的半径为2,则圆心到直线l的距离,解得∴直线l的方程为,即综上,直线l的方程为或18、(1);(2)8.【解析】(1)写出抛物线E的准线,利用抛物线定义求出p即可作答.(2)由(1)求出焦点坐标,设出直线的方程,并与抛物线E的方程联立,由此求出C点坐标,同理可得D点坐标,列式计算作答.小问1详解】抛物线:的准线方程为:,由抛物线定义得:,解得,所以抛物线的方程为:.【小问2详解】由(1)知,点,显然直线,的斜率都存在且不为0,设直线斜率为,则的斜率为,直线的方程为:,由消去y并整理得,设,则,于得线段PQ中点,同理得,则,当且仅当,即时取“=”,所以的最小值是8.【点睛】结论点睛:抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离19、(1)(2)【解析】(1)根据等差数列的性质,结合题意,可求得值,根据成等比数列,即可求得d值,代入等差数列通项公式,即可得答案;(2)由(1)可求得,即可得表达式,根据裂项相消求和法,即可得答案.【小问1详解】设等差数列的公差为,由等差数列性质可得,解得,又成等比数列,所以,整理得,因为,所以,所以【小问2详解】由(1)可得,则,所以,所以20、(1)证明见解析;(2)证明见解析;(3).【解析】(1)根据给定条件证得即可推理作答.(2)由已知条件,以点A作原点建立空间直角坐标系,借助空间位置关系的向量证明即可作答.(3)利用(2)中信息,借助空间向量求直线与平面所成角的正弦值.【小问1详解】在四棱锥中,因分别是的中点,则,因平面,平面,所以平面.【小问2详解】在四棱锥中,平面,,以点A为原点,射线AB,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,而且,则,,设平面的法向量,由,令,得,又,因此有,所以平面.【小问3详解】由(2)知,,令直线与平面所成角为,则有,所以直线与平面所成角的正弦值.21、(1);(2).【解析】(1)根据题意得到关于的方程,解之即可求出结果;(2)联立直线的方程与椭圆方程,结合韦达定理以及平面向量数量积的坐标运算即可求出结果.【小问1详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉雕艺术品市场发展现状调查及供需格局分析预测报告
- 2024年度温室大棚设计与施工一体化合同
- 2024年度市场推广与广告投放合同
- 2024年度农产品加工设备租赁及服务合同
- 2024年度广告合同:户外广告位租赁与发布协议
- 紧身腹围市场发展预测和趋势分析
- 药用鹿茸市场需求与消费特点分析
- 焦炉煤气点火器市场发展现状调查及供需格局分析预测报告
- 连帽浴巾市场发展预测和趋势分析
- 秧歌服市场需求与消费特点分析
- 焓熵图(膨胀线)
- 青春期多囊卵巢综合征诊治共识.ppt
- 前后鼻音生字表
- 人教版八年级上册英语单词表默写版(直接打印)
- 五年级数学质量分析经验交流发言稿(共3页)
- 工程的材料及成型技术基础概念鞠鲁粤编
- (精选)国培结业典礼领导讲话稿范文(3篇)
- 江西省科技创新平台建设(PPT课件)
- XSD3016轮式洗砂机结构设计和实现机械设计和自动化专业论文设计
- 初中各篇文言文单字解释大全
- 二年级上册英语素材单词与句型_广州版(一起)
评论
0/150
提交评论