2025届上海市师大二附中高二数学第一学期期末达标检测模拟试题含解析_第1页
2025届上海市师大二附中高二数学第一学期期末达标检测模拟试题含解析_第2页
2025届上海市师大二附中高二数学第一学期期末达标检测模拟试题含解析_第3页
2025届上海市师大二附中高二数学第一学期期末达标检测模拟试题含解析_第4页
2025届上海市师大二附中高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市师大二附中高二数学第一学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前n项和为,,,若(),则n的值为()A.15 B.14C.13 D.122.已知集合,,则()A. B.C. D.3.已知点是抛物线上的动点,过点作圆的切线,切点为,则的最小值为()A. B.C. D.4.已知双曲线:与椭圆:有相同的焦点,且一条渐近线方程为:,则双曲线的方程为()A. B.C. D.5.已知是定义在上的奇函数,对任意两个不相等的正数、都有,记,,,则()A. B.C. D.6.已知是偶函数的导函数,.若时,,则使得不等式成立的的取值范围是()A. B.C. D.7.已知点是点在坐标平面内的射影,则点的坐标为()A. B.C. D.8.在等差数列中,,,则公差A.1 B.2C.3 D.49.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则10.已知复数满足,其中为虚数单位,则的共轭复数为()A. B.C. D.11.第24届冬季奥林匹克运动会,将于2022年2月4日在北京市和张家口市联合举行.北京将成为奥运史上第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会的城市.根据安排,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是两个“相似椭圆”(离心率相同的两个椭圆我们称为“相似椭圆”).如图,由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,若两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.12.若双曲线的离心率为3,则的最小值为()A. B.1C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的一条渐近线被圆所截得的弦长为2,则该双曲线的实轴长为______.14.直线l过点P(1,3),且它的一个方向向量为(2,1),则直线l的一般式方程为__________.15.已知,,,,使得成立,则实数a的取值范围是___________.16.双曲线的焦点在圆上,圆O与双曲线C的渐近线在第一、四象限分别交于P,Q两点满足(其中O是坐标原点),则的面积是_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)写出下列命题的否定,并判断它们的真假:(1):任意两个等边三角形都是相似的;(2):,.18.(12分)已知等比数列的公比,,.(1)求数列的通项公式;(2)令,若,求满足条件的最大整数n.19.(12分)已知数列中,,.(1)求证:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.20.(12分)已知.(1)求在上的单调递增区间;(2)已知锐角内角,,的对边长分别是,,,若,.求面积的最大值.21.(12分)已知椭圆,离心率为,椭圆上任一点满足(1)求椭圆的方程;(2)若动直线与椭圆相交于、两点,若坐标原点总在以为直径的圆外时,求的取值范围.22.(10分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知条件列方程组求出,再由列方程求n的值【详解】设等差数列的公差为,则由,,得,解得,因为,所以,即,解得或(舍去),故选:B2、B【解析】根据根式、分式的性质求定义域可得集合A,解一元二次不等式求集合B,再由集合的交运算求.【详解】∵,,∴故选:B3、C【解析】分析可知圆的圆心为抛物线的焦点,可求出的最小值,再利用勾股定理可求得的最小值.【详解】设点的坐标为,有,由圆的圆心坐标为,是抛物线的焦点坐标,有,由圆的几何性质可得,又由,可得的最小值为故选:C.4、B【解析】由渐近线方程,设出双曲线方程,结合与椭圆有相同的焦点,求出双曲线方程.【详解】∵双曲线:的一条渐近线方程为:∴设双曲线:∵双曲线与椭圆有相同的焦点∴,解得:∴双曲线的方程为.故选:B.5、A【解析】由题,可得是定义在上的偶函数,且在上单调递减,在上单调递增,根据函数的单调性,即可判断出的大小关系.【详解】设,由题,得,即,所以函数在上单调递减,因为是定义在R上的奇函数,所以是定义在上的偶函数,因此,,,即.故选:A【点睛】本题主要考查利用函数的单调性判断大小的问题,其中涉及到构造函数的运用.6、C【解析】构造函数,分析函数在上的单调性,将所求不等式变形为,可得出关于的不等式,即可得解.【详解】构造函数,其中,则,所以,函数为上的奇函数,当时,,且不恒为零,所以,函数在上为增函数,且该函数在上也为增函数,故函数在上为增函数,因为,则,由得,可得,解得故选:C.7、D【解析】根据空间中射影的定义即可得到答案.【详解】因为点是点在坐标平面内的射影,所以的竖坐标为0,横、纵坐标与A点的横、纵坐标相同,所以点的坐标为.故选:D8、B【解析】由,将转化为表示,结合,即可求解.【详解】,.故选:B.【点睛】本题考查等差数列基本量的计算,属于基础题.9、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C10、D【解析】由复数除法求得后可得其共轭复数【详解】由题意,∴故选:D11、C【解析】设内层椭圆的方程为,可得外层椭圆的方程为,设切线的方程为,联立方程组,根据,得到,同理得到,结合题意求得,进而求得离心率.【详解】设内层椭圆方程为,因为内外层的椭圆的离心率相同,可设外层椭圆的方程为,设切线的方程为,联立方程组,整理得,由,整理得,设切线的方程为,同理可得,因为两切线斜率之积等于,可得,可得,所以离心率为.故选:C.12、D【解析】由双曲线的离心率为3和,求得,化简,结合基本不等式,即可求解.【详解】由题意,双曲线的离心率为3,即,即,又由,可得,所以,当且仅当,即时,“”成立.故选:D【点睛】使用基本不等式解答问题的策略:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a,b的关系,即可得到的值【详解】一渐近线x+ay=0,被圆(x-2)2+y2=4所截弦长为2,所以圆心到直线距为,即,a=1.所以双曲线的实轴长为2.故答案为:14、【解析】根据直线方向向量求出直线斜率即可得直线方程.【详解】因为直线l的一个方向向量为(2,1),所以其斜率,所以l方程为:,即其一般式方程为:.故答案为:.15、【解析】由题可得,求导可得的单调性,将的最小值代入,即得.【详解】∵,,使得成立,∴由,得,当时,,∴在区间上单调递减,在区间上单调递增,∴函数在区间上的最小值为又在上单调递增,∴函数在区间上的最小值为,∴,即实数的取值范围是故答案为:.16、【解析】根据双曲线的焦点在圆上可求出的值,设线段与轴的交点坐标为,进而根据求出的坐标,代入圆中,求出的值,即可求出结果.【详解】因为双曲线的焦点在圆上,所以,设线段与轴的交点坐标为,结合双曲线与圆的对称性可知为线段的中点,又因为,即,且,则,又因为直线的方程为,所以,又因为在圆上,所以,又因为,则,所以,从而,故,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)存在两个等边三角形不是相似的,假命题(2),真命题【解析】根据全称命题与存在性命题的关系,准确改写,即可求解.【小问1详解】解:命题“任意两个等边三角形都是相似的”是一个全称命题根据全称命题与存在性命题的关系,可得其否定“存在两个等边三角形不是相似的”,命题为假命题.【小问2详解】解:根据全称命题与存在性命题关系,可得:命题的否定为.因为,所以命题为真命题.18、(1)(2)【解析】(1)由等比数列的性质可得,结合条件求出,得出公比,从而得出通项公式.(2)由(1)可得,再求出的前项和,从而可得出答案.【小问1详解】由题意可知,有,,得或∴或又,∴∴【小问2详解】,∴∴,又单调递增,所以满足条件的的最大整数为19、(1)证明见解析,(2)【解析】(1)由,取倒数得到,再利用等差数列的定义求解;(2)由(1)得到,利用错位相减法求解.【小问1详解】证明:由,以及,显然,所以,即,所以数列是首项为,公差为的等差数列,所以,所以;【小问2详解】由(1)可得,,所以数列的前项和①所以②则由②-①可得:,所以数列的前项和.20、(1);(2).【解析】(1)首先根据三角函数恒等变换得到,再求其单调增区间即可.(2)根据得到,根据余弦定理和基本不等式得到,结合三角形面积公式计算即可.【小问1详解】由题意.由,得,令,得,所以在上的单调递增区间是【小问2详解】因为,所以,得,又C是锐角,所以,由余弦定理:,得,所以,且当时等号成立所以,故面积最大值为21、(1)(2)或【解析】(1)由已知计算可得即可得出方程.(2)由已知可得联立方程,结合韦达定理计算即可得出结果.【小问1详解】依题得解得:椭圆的方程为.【小问2详解】由已知动直线与椭圆相交于、,设联立得:解得:,即:或(*)坐标原点总在以为直径的圆外则:,即将(*)代入此式,解得:,即或或22、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行等价转化,再与恒为定值进行联系,即可求得的值.【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论