版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昭通市巧家县一中2025届高二上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“赵爽弦图”是我国古代数学的瑰宝,如图所示,它是由四个全等的直角三角形和一个正方形构成.现用4种不同的颜色(4种颜色全部使用)给这5个区域涂色,要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色,则不同的涂色方案有()A.24种 B.48种C.72种 D.96种2.如图,在四面体中,,,,D为BC的中点,E为AD的中点,则可用向量,,表示为()A. B.C. D.3.命题,,则为()A., B.,C., D.,4.我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问次日织几问?其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,请问第二天织布的尺数是()A. B.C. D.5.已知数列满足,则()A.2 B.C.1 D.6.斗笠,用竹篾夹油纸或竹叶粽丝等编织,是人们遮阳光和雨的工具.某斗笠的三视图如图所示(单位:),若该斗笠水平放置,雨水垂直下落,则该斗笠被雨水打湿的面积为()A. B.C. D.7.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.128.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数的个数为()A.24 B.18C.12 D.69.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.10.设函数在定义域内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.11.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C.与相等 D.12.已知双曲线的左右焦点分别为、,过点的直线交双曲线右支于A、B两点,若是等腰三角形,且,则的周长为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则曲线在点处的切线的倾斜角是_______14.若抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是___________.15.根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额(单位:千亿元)和出口总额(单位:千亿元)之间的一组数据如下:2017年2018年2019年2020年若每年的进出口总额,满足线性相关关系,则______;若计划2022年出口总额达到千亿元,预计该年进口总额为______亿元16.若不同的平面的一个法向量分别为,,则与的位置关系为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中,内角、、所对的边为、、,.(1)求角的大小;(2)若、、成等差数列,且,求边长的值.18.(12分)已知各项均为正数的等比数列{}的前4项和为15,且.(1)求{}的通项公式;(2)若,记数列{}前n项和为,求.19.(12分)设O为坐标原点,动点P在圆上,过点P作轴的垂线,垂足为Q且.(1)求动点D的轨迹E的方程;(2)直线与圆相切,且直线与曲线E相交于两不同的点A、B,T为线段AB的中点.线段OA、OB分别与圆O交于M、N两点,记的面积分别为,求的取值范围.20.(12分)如图,四棱锥中,是边长为2的正三角形,底面为菱形,且平面平面,,为上一点,满足.(1)证明:;(2)求二面角的余弦值.21.(12分)已知,直线过且与交于两点,过点作直线的平行线交于点(1)求证:为定值,并求点的轨迹的方程;(2)设动直线与相切于点,且与直线交于点,在轴上是否存在定点,使得以为直径的圆恒过定点?若存在,求出的坐标;若不存在,说明理由22.(10分)已知,,其中.(1)求的值;(2)设(其中、为正整数),求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,分2步进行分析区域①、②、⑤和区域③、④的涂色方法,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:当区域①、②、⑤这三个区域两两相邻,有种涂色的方法;当区域③、④,必须有1个区域选第4种颜色,有2种选法,选好后,剩下的区域有1种选法,则区域③、④有2种涂色方法,故共有种涂色的方法.故选:B2、B【解析】利用空间向量的基本定理,用,,表示向量【详解】因为是的中点,是的中点,,故选:B3、B【解析】直接利用特称命题的否定是全称命题写出结果即可.【详解】命题,为特称命题,而特称命题的否定是全称命题,所以命题,,则为:,.故选:B4、C【解析】根据等比数列求和公式求出首项即可得解.【详解】由题可得该女子每天织布的尺数成等比数列,设其首项为,公比为,则,解得所以第二天织布的尺数为.故选:C5、D【解析】首先得到数列的周期,再计算的值.【详解】由条件,可知,两式相加可得,即,所以数列是以周期为的周期数列,.故选:D6、A【解析】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,则所求面积积为圆锥的侧面积与圆环的面积之和【详解】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,所以该斗笠被雨水打湿的面积为,故选:A7、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C8、C【解析】根据题意,结合计数原理中的分步计算,以及排列组合公式,即可求解.【详解】根据题意,要使组成无重复数字的三位数为偶数,则从0,2中选一个数字为个位数,有种可能,从1,3,5中选两个数字为十位数和百位数,有种可能,故这个无重复数字的三位数为偶数的个数为.故选:C.9、C【解析】根据题意,设抛物线的方程为,进而待定系数求解即可.【详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C10、D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.11、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D12、A【解析】设,.根据双曲线的定义和等腰三角形可得,再利用余弦定理可求得,从而可得的周长.【详解】由双曲线可得设,.则,,所以,因为是等腰三角形,且,所以,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周长故选:A【点睛】关键点点睛:根据双曲线的定义求解是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用导数的定义,化简整理,可得,根据导数的几何意义,即可求得答案.【详解】因为=,所以,则曲线在点处的切线斜率为,即,又所以所求切线的倾斜角为故答案为:14、5【解析】根据抛物线的定义知点P到焦点距离等于到准线的距离即可求解.【详解】因为抛物线方程为,所以准线方程,所以点到准线的距离为,故点到该抛物线焦点的距离.故答案为:15、①.1.6②.3.65千##3650【解析】根据给定数表求出样本中心点,代入即可求得,取可求出该年进口总额.【详解】由数表得:,,因此,回归直线过点,由,解得,此时,,当时,即,解得,所以,预计该年进口总额为千亿元.故答案为:1.6;3.65千16、平行【解析】根据题意得到,得出,即可得到平面与的位置关系.【详解】由题意,平面的一个法向量分别为,,可得,所以,所以,即平面与的位置关系为平行.故答案为:平行三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用正弦定理可求得的值,结合角的取值范围可求得角的值;(2)由三角形的面积公式可求得的值,由已知可得,利用余弦定理可得出关于的等式,即可求得边的长.【小问1详解】解:因为,由正弦定理可得,,则,可得,,,因此,.【小问2详解】解:,可得,因为、、成等差数列,则,由余弦定理可得,解得.18、(1)(2)【解析】(1)设正项的等比数列的公比为,根据题意列出方程组,求得的值,即可求得数列的通项公式;(2)由,结合乘公比错位相减求和,即可求解.小问1详解】解:设正项的等比数列的公比为,显然不为1,因为等比数列前4项和为且,可得,解得,所以数列的通项公式为.【小问2详解】解:由,所以,可得,两式相减得,所以.19、(1);(2).【解析】(1)设出点D的坐标,借助向量运算表示出点P的坐标代入圆O的方程计算作答.(2)在直线的斜率存在时设出其方程,与轨迹E的方程联立,借助韦达定理表示出,再利用二次函数性质计算得解,然后计算直线的斜率不存在的值作答.【小问1详解】设点,则,因,则有,又点P在圆上,即,所以动点D的轨迹E的方程是.【小问2详解】当直线的斜率存在时,设其方程为:,因直线与圆相切,则,即,而时,直线与椭圆E相切,不符合题意,因此,由消去x并整理得:,设,则,而点T是线段AB中点,则有:,令,则,而,当,即时,,当,即时,,而,于是得,当直线的斜率不存在时,直线,,此时,所以的取值范围是.【点睛】思路点睛:圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以斜率或点的横、纵坐标等.而目标函数的最值可以通过二次函数或基本不等式或导数等求得.20、(1)证明见解析;(2).【解析】(1)设为中点,连接,根据,证明平面得到答案.(2)以为原点,,,分别为,,轴建立空间直角坐标系,计算各点坐标,计算平面和平面的法向量,根据向量夹角公式计算得到答案.【详解】(1)设为中点,连接,,∵,∴,又∵底面四边形为菱形,,∴为等边三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以为原点,,,分别为,,轴建立空间直角坐标系,则,,,,,,由,,,即,∴,,,设为平面的法向量,则由,令,得,,∴,设为平面的法向量,则由,令,得,,∴,设二面角的平面角为,则,∴二面角的的余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力,建立空间直角坐标系是解题的关键.21、(1)证明见解析,()(2)存在,【解析】(1)根据题意和椭圆的定义可知点的轨迹是以A,为焦点的椭圆,且,,进而得出椭圆标准方程;(2)设,联立动直线方程和椭圆方程并消元得出关于的一元二次方程,根据根的判别式可得点P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 热顾问聘用合同2024年度违约责任3篇
- 二零二四年度智能电网控制系统委托开发合同3篇
- 二零二四年电子政务系统建设合同2篇
- 二零二四年度艺人经纪合同期限规定3篇
- 鱼苗采购合同
- 二零二四年度艺术品代理销售合同代理范围与销售策略3篇
- 幼儿园厨余垃圾处理合同
- 2024年度二手车位交易资金监管服务合同3篇
- 吊车操作员劳动合同
- 2024年度影视作品制作与版权合同2篇
- 法律文书校对规定
- 吉林省抗菌药物临床应用分级管理目录(2012年版)
- 13J104《蒸压加气混凝土砌块、板材构造》
- 史前时期 中国境内早期人类与文明的起源作业设计
- 小学食堂结算统计表(午餐、晚餐都吃的学校适用)
- 西宁市污水处理有限公司西宁市第一污水处理厂升级改造工程 环评报告
- 全套IATF16949内审核检查表(含审核记录)
- CFM56-5B发动机VBV活门的钢丝软轴操控原理及软轴刚度研究
- 复旦大学实验室安全考试(2021年校级)
- 化工检修电工试题库+参考答案
- 国家电网公司招聘高校毕业生应聘登记表
评论
0/150
提交评论