版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏自治区昌都市第三高级中学2025届高一数学第一学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的大小关系是()A. B.C. D.2.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A. B.C. D.3.某集团校为调查学生对学校“延时服务”的满意率,想从全市3个分校区按学生数用分层随机抽样的方法抽取一个容量为的样本.已知3个校区学生数之比为,如果最多的一个校区抽出的个体数是60,那么这个样本的容量为()A. B.C. D.4.已知是定义在上的奇函数,且在上单调递增,若,则的解集为()A. B.C. D.5.函数的部分图象如图所示,将的图象向右平移个单位长度后得到的函数图象关于轴对称,则的最小值为()A. B.C. D.6.若点在函数的图像上,则A.8 B.6C.4 D.27.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A.98 B.99C.99.5 D.1008.已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A'B'C'D'(如图所示),其中A'D'=2,B'C'=4,A'B'=1,则直角梯形DC边的长度是A.5 B.2C.25 D.9.若,,则角的终边在A.第一象限 B.第二象限C.第三象限 D.第四象限10.某时钟的秒针端点A到中心点O的距离为5cm,秒针绕点O匀速旋转,当时间:t=0时,点A与钟面上标12的点B重合,当t∈[0,60],A,B两点间的距离为d(单位:A.5sintC.5sinπt二、填空题:本大题共6小题,每小题5分,共30分。11.当曲线与直线有两个相异交点时,实数的取值范围是________12.一条光线从A处射到点B(0,1)后被轴反射,则反射光线所在直线的一般式方程为_____________.13.幂函数的图像经过点,则的值为____14.函数的定义域是______________15.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.16.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y18.已知函数(1)求的最小正周期;(2)若,,求的值19.如图,在四棱锥中,底面,,,,,是中点(Ⅰ)证明:平面;(Ⅱ)求二面角的正弦值20.已知角的终边经过点(1)求的值;(2)求的值21.求解下列问题(1)已知,且为第二象限角,求的值.(2)已知,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用指数函数与对数函数的单调性,把各数与中间值0,1比较即得【详解】利用指数函数的单调性知:,即;利用指数函数的单调性知:,即;利用对数函数的单调性知:,即;所以故选:C2、C【解析】由题意可得,底面放三个钢球,上再落一个钢球时体积最小,于是把钢球的球心连接,则可得到一个棱长为2的小正四面体,该小正四面体的高为,且由正四面体的性质可知,正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心是重合的,所以小正四面体的中心到底面的距离是,正四面体的中心到底面的距离是,所以可知正四面体的高的最小值为,故选择C考点:几何体的体积3、B【解析】利用分层抽样比求解.【详解】因为样本容量为,且3个校区学生数之比为,最多的一个校区抽出的个体数是60,所以,解得,故选:B4、D【解析】由可得,由单调性即可判定在和上的符号,再由奇偶性判定在和上的符号,即可求解.【详解】∵即,∵在上单调递增,∴当时,,此时,当时,,此时,又∵是定义在上的奇函数,∴在上单调递增,且,当时,,此时,当时,,此时,综上可知,的解集为,故选:D【点睛】本题考查了函数的奇偶性和单调性的交汇,求得函数在各个区间上的符号是关键,考查了推理能力,属于中档题.5、C【解析】观察图象可得函数的最大值,最小值,周期,由此可求函数的解析式,根据三角函数变换结论,求出平移后的函数解析式,根据平移后函数图象关于轴对称,列方程求的值,由此确定其最小值.【详解】根据函数的部分图象,可得,,∴因,可得,又,求得,故将的图象向右平移个单位长度后得到的函数的图象,因为的图象关于直线轴对称,故,即,故的最小值为,故选:C6、B【解析】由已知利用对数的运算可得tanθ,再利用倍角公式及同角三角函数基本关系的运用化简即可求值【详解】解:∵点(8,tanθ)在函数y=的图象上,tanθ,∴解得:tanθ=3,∴2tanθ=6,故选B【点睛】本题主要考查了对数的运算性质,倍角公式及同角三角函数基本关系的运用,属于基础题7、C【解析】根据分位数的定义即可求得答案.【详解】这组数据的60%分位数是.8、B【解析】根据斜二测画法,原来的高变成了45°方向的线段,且长度是原高的一半,∴原高为AB=2而横向长度不变,且梯形ABCD是直角梯形,∴DC=故选B9、D【解析】本题考查三角函数的性质由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为10、D【解析】由题知圆心角为tπ30,过O作AB的垂线,通过计算可得d【详解】由题知,圆心角为tπ30,过O作AB的垂线,则故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由解析式可知曲线为半圆,直线恒过;画出半圆的图象,找到直线与半圆有两个交点的临界状态,利用圆的切线的求解方法和两点连线斜率公式求得斜率的取值范围.【详解】为恒过的直线则曲线图象如下图所示:由图象可知,当直线斜率时,曲线与直线有两个相异交点与半圆相切,可得:解得:又本题正确结果:【点睛】本题考查利用曲线与直线的交点个数求解参数范围的问题,关键是能够通过数形结合的方式找到临界状态,易错点是忽略曲线的范围,误认为曲线为圆.12、【解析】根据反射光线的性质,确定反射光线上的两个点的坐标,最后确定直线的一般式方程.【详解】因为一条光线从A处射到点B(0,1)后被轴反射,所以点A关于直线对称点为,根据对称性可知,反射光线所在直线过点,又因为反射光线所在直线又过点,所以反射光线所在直线斜率为,所以反射光线所在直线方程为,化成一般式得:,故答案为:.13、2【解析】因为幂函数,因此可知f()=214、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:15、2【解析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:16、【解析】几何体为一个圆锥与一个棱柱的组合体,体积为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得最大值时的x的集合,(2)由五点法作图,列出表格,并画图即可.【小问1详解】令,函数取得最大值,解得,所以此时x集合为.【小问2详解】表格如下:x0y11作图如下,18、(1)(2)【解析】(1)根据二倍角的正、余弦公式和辅助角公式化简计算可得,结合公式计算即可;(2)根据同角三角函数的基本关系和角的范围求出,根据和两角和的正弦公式直接计算即可.【小问1详解】最小正周期【小问2详解】,因为,,若,则,不合题意,又,所以,因为,所以,所以19、(1)见解析;(2).【解析】(1)通过和得到平面,利用等腰三角形的性质可得,可得结论;(2)过点作,垂足为,连接,证得是二面角的平面角,在中先求出,然后在中求出结论.试题解析:(1)证明:在四棱锥中,因底面,平面,故.由条件,,∴平面.又平面,∴.由,,可得.∵是的中点,∴.又,综上得平面.(2)过点作,垂足为,连接,由(1)知,平面,在平面内的射影是,则因此是二面角的平面角由已知,可得.设,可得,,,在中,∵,∴,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院医疗工作汇报
- 声带息肉术后护理
- 《lkm模具钢讲义》课件
- 房地产别墅项目培训
- 长期购销合同简单范本
- 钢铁公司二零二四年度炉渣清运及处理合同
- 《染色体变异超好用》课件
- 咨询服务协议书范文6篇
- 租赁合同增加承租人完整版
- 美欧达电热水器2024年度加盟商务合同
- 五年(2020-2024)高考语文真题分类汇编专题07 大作文(原卷版)
- 糖尿病中医辨证及治疗
- 从理论到实践:2024年ESD防护培训课程详解
- 2024-2030年中国洁具行业发展趋势及竞争力策略分析报告
- 职场培训课件教学课件
- 2024年新疆(兵团)公务员考试《行测》真题及答案解析
- 2024北京初三一模语文汇编:基础知识综合
- 2025届江苏省南通市海安中学物理高一上期末质量检测试题含解析
- 医疗设备安装与调试工程方案
- 2024年《论教育》全文课件
- 税务会计岗位招聘面试题与参考回答(某世界500强集团)2024年
评论
0/150
提交评论