版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省曹县三桐中学2025届高一数学第一学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点,,则直线的倾斜角为()A. B.C. D.2.设函数,A.3 B.6C.9 D.123.为得到函数的图象,只需将函数的图象()A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位4.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b5.中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,其高为3,底面,底面扇环所对的圆心角为,弧AD长度为弧BC长度的3倍,且,则该曲池的体积为()A B.C. D.6.玉溪某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品A.60件 B.80件C.100件 D.120件7.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R8.设为两条不同的直线,为三个不重合平面,则下列结论正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则9.为了得到函数的图象,只需把函数的图象()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度10.命题“”的否定是:()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数是定义在上的奇函数,且满足,当时,,则__________.12.已知在同一平面内,为锐角,则实数组成的集合为_________13.等于_______.14.已知是偶函数,则实数a的值为___________.15.已知幂函数是奇函数,则___________.16.已知为奇函数,,则____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)当时,求函数的值域;(2)若恒成立,求实数的取值范围18.已知为奇函数,为偶函数,且.(1)求及的解析式及定义域;(2)如果函数,若函数有两个零点,求实数的取值范围.19.已知函数,,(1)求的解析式和最小正周期;(2)求在区间上的最大值和最小值20.某化工企业致力于改良工艺,想使排放的废气中含有的污染物数量逐渐减少.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,第次改良工艺后所排放的废气中含有的污染物数量为,则可建立函数模型,其中是指改良工艺的次数.已知,(参考数据:).(1)试求该函数模型的解析式;(2)若该地环保部门要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺才能使该企业所排放的废气中含有的污染物数量达标?21.已知在第一象限,若,,,求:(1)边所在直线的方程;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由两点求斜率公式可得AB所在直线当斜率,再由斜率等于倾斜角的正切值求解【详解】解:∵直线过点,,∴,设AB的倾斜角为α(0°≤α<180°),则tanα=1,即α=45°故选B【点睛】本题考查直线的倾斜角,考查直线倾斜角与斜率的关系,是基础题2、C【解析】.故选C.3、A【解析】先将变形为,即可得出结果.详解】,只需将函数的图象向左平移个长度单位.故选:A.【点睛】本题考查三角函数的平移变换,属于基础题.4、A【解析】直接判断范围,比较大小即可.【详解】,,,故a>b>c.故选:A.5、B【解析】利用柱体体积公式求体积.【详解】不妨设弧AD所在圆的半径为R,弧BC所在圆的半径为r,由弧AD长度为弧BC长度的3倍可知,,即.故该曲池的体积.故选:B6、B【解析】确定生产件产品的生产准备费用与仓储费用之和,可得平均每件的生产准备费用与仓储费用之和,利用基本不等式,即可求得最值【详解】解:根据题意,该生产件产品的生产准备费用与仓储费用之和是这样平均每件的生产准备费用与仓储费用之和为(为正整数)由基本不等式,得当且仅当,即时,取得最小值,时,每件产品的生产准备费用与仓储费用之和最小故选:【点睛】本题考查函数的构建,考查基本不等式的运用,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案,属于基础题7、A【解析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理8、B【解析】根据线面平行线面垂直面面垂直的定义及判定定理,逐一判断正误.【详解】选项,若,,则可能平行,相交或异面:故错选项,若,,则,故正确.选项,若,,因为,,为三个不重合平面,所以或,故错选项,若,,则或,故错故选:【点睛】本题考查线面平行及线面垂直的知识,注意平行关系中有一条平行即可,而垂直关系中需满足任意性,概念辨析题.9、A【解析】根据三角函数图象的变换求解即可【详解】由题意,把函数的图象向左平行移动个单位长度得到故选:A10、A【解析】由特称命题的否定是全称命题,可得出答案.【详解】根据特称命题的否定是全称命题,可知命题“”的否定是“”.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】由,可得函数是以为一个周期的周期函数,再根据函数的周期性和奇偶性将所求转化为已知区间即可得解.【详解】解:因为,所以函数是以为一个周期的周期函数,所以,又因为函数是定义在上的奇函数,所以,所以.故答案为:.12、【解析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.13、【解析】直接利用诱导公式即可求解.【详解】由诱导公式得:.故答案为:.14、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:15、1【解析】根据幂函数定义可构造方程求得,将的值代入解析式验证函数奇偶性可确定结果.【详解】由题意得,∴或1,当时,是偶函数;当时,是奇函数.故答案为:1.16、【解析】根据奇偶性求函数值.【详解】因为奇函数,,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)采用换元,令,当时,把函数转化为二次函数,即可求出答案.(2)采用换元,令,即在恒成立,即可求出答案.【小问1详解】函数,令,当时,,的值域为.【小问2详解】,恒成立,只需:在恒成立;令:则得.18、(1),(2)【解析】(1)根据是奇函数,是偶函数,结合,以取代入上式得到,联立求解;(2)易得,,设,转化为,,根据时,与有两个交点,转化为函数,在有一个零点求解.【小问1详解】解:因为是奇函数,是偶函数,所以,,∵,①∴令取代入上式得,即,②联立①②可得,,【小问2详解】,,,可得,∴,.设,∴,,∵当时,与有两个交点,要使函数有两个零点,即使得函数,在有一个零点,(时,只有一个零点)即方程在内只有一个实根,∵,令,则使即可,∴或.∴的取值范围.19、(1),;(2)最大值2,最小值【解析】(1)先将代入,结合求出函数解析式,再用公式求出最小正周期.(2)根据,求出的范围,再求出的范围,即可得出在区间上的最大值和最小值.【详解】解:(1)因为,,所以,所以,又因为,所以,故的解析式为,所以的最小正周期为.(2)因为,所以,所以,则,故在区间上的最大值2,最小值.【点睛】本题主要考查了三角函数的恒等变换的应用,三角函数的性质,注重对基础知识的考查.20、(1);(2)6.【解析】(1)将,代入函数模型解解得答案;(2)结合题意,解出指数不等式即可.【小问1详解】根据题意,,所以该函数模型的解析式为.【小问2详解】由(1),令,则,而,则.综上:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国E1/V.35转换器行业投资前景及策略咨询研究报告
- 2025至2030年中国环氧地坪涂料专用色浆数据监测研究报告
- 2025至2030年中国液化气燃具数据监测研究报告
- 高铁站附近用地居间协议
- 2025至2030年中国显示控制单元数据监测研究报告
- 甜品店装修保密协议
- 2025至2030年中国中空包装容器数据监测研究报告
- 足疗养生馆内部装潢合同
- 2025年中国除静电扫毛机市场调查研究报告
- 2025年中国赛克市场调查研究报告
- 小学六年级数学解方程计算题
- 春节英语介绍SpringFestival(课件)新思维小学英语5A
- 进度控制流程图
- 2023年江苏省南京市中考化学真题
- 【阅读提升】部编版语文五年级下册第四单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 供电副所长述职报告
- 现在完成时练习(短暂性动词与延续性动词的转换)
- 产品质量监控方案
- 物业总经理述职报告
- 新起点,新发展心得体会
- 深圳大学学校简介课件
评论
0/150
提交评论