四川省富顺二中高2025届高二数学第一学期期末达标检测试题含解析_第1页
四川省富顺二中高2025届高二数学第一学期期末达标检测试题含解析_第2页
四川省富顺二中高2025届高二数学第一学期期末达标检测试题含解析_第3页
四川省富顺二中高2025届高二数学第一学期期末达标检测试题含解析_第4页
四川省富顺二中高2025届高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省富顺二中高2025届高二数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“”的否定是()A. B.C. D.2.已知函数,的导函数,的图象如图所示,则的极值情况为()A.2个极大值,1个极小值 B.1个极大值,1个极小值C.1个极大值,2个极小值 D.1个极大值,无极小值3.函数的递增区间是()A. B.和C. D.和4.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球5.等比数列的公比为,则“”是“对于任意正整数n,都有”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件6.已知向量,若,则()A. B.5C.4 D.7.已知双曲线的离心率为,则的渐近线方程为A. B.C. D.8.魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是注述中所用的割圆术是一种无限与有限的转化过程,比如在正数中的“”代表无限次重复,设,则可以利用方程求得,类似地可得到正数()A.2 B.3C. D.9.已知,若,则的取值范围为()A. B.C. D.10.命题“,则”及其逆命题、否命题和逆否命题这四个命题中,真命题的个数为()A.0 B.2C.3 D.411.三棱锥D-ABC中,AC=BD,且异面直线AC与BD所成角为60°,E、F分别是棱DC、AB的中点,则EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°12.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,正方形ABCD的边长为8,取正方形ABCD各边的中点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL.依此方法一直继续下去.①从正方形ABCD开始,第7个正方形的边长为___;②如果这个作图过程可以一直继续下去,那么作到第n个正方形,这n个正方形的面积之和为___.14.数列中,,,设(1)求证:数列是等比数列;(2)求数列的前项和;(3)若,为数列的前项和,求不超过的最大的整数15.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x=_____________,y=_____________16.已知等差数列满足,,,则公差______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)求的单调区间;18.(12分)已知抛物线的焦点为F,以F和准线上的两点为顶点的三角形是边长为的等边三角形,过的直线交抛物线E于A,B两点(1)求抛物线E的方程;(2)是否存在常数,使得,如果存在,求的值,如果不存在,请说明理由;(3)证明:内切圆的面积小于19.(12分)设命题p:实数x满足x≤2,或x>6,命题q:实数x满足x2﹣3ax+2a2<0(其中a>0)(1)若a=2,且为真命题,求实数x的取值范围;(2)若q是的充分不必要条件,求实数a的取值范围.20.(12分)若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1)(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率21.(12分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角的余弦值.22.(10分)如图,在三棱柱中,侧棱垂直于底面,分别是的中点(1)求证:平面平面;(2)求证:平面;(3)求三棱锥体积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可.【详解】命题“”的否定是“”.故选:C2、B【解析】根据图象判断的正负,再根据极值的定义分析判断即可【详解】由,得,令,由图可知的三个根即为与的交点的横坐标,当时,,当时,,即,所以为的极大值点,为的极大值,当时,,即,所以为的极小值点,为的极小值,故选:B3、C【解析】求导后,由可解得结果.【详解】因为的定义域为,,由,得,解得,所以的递增区间为.故选:C.【点睛】本题考查了利用导数求函数的增区间,属于基础题.4、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.5、D【解析】结合等比数列的单调性,根据充分必要条件的定义判断【详解】若,,则,,充分性不成立;反过来,若,,则时,必要性不成立;因此“”是“对于任意正整数n,都有”的既不充分也不必要条件.故选:D6、B【解析】根据向量垂直列方程,化简求得.【详解】由于,所以.故选:B7、C【解析】,故,即,故渐近线方程为.【考点】本题考查双曲线的基本性质,考查学生的化归与转化能力.8、A【解析】设,则,解方程可得结果.【详解】设,则且,所以,所以,所以,所以或(舍).所以.故选:A【点睛】关键点点睛:设是解题关键.9、C【解析】根据题意,由为原点到直线上点的距离的平方,再根据点到直线垂线段最短,即可求得范围.【详解】由,,视为原点到直线上点的距离的平方,根据点到直线垂线段最短,可得,所有的取值范围为,故选:C.10、D【解析】首先判断原命题的真假,写出其逆命题,即可判断其真假,再根据互为逆否命题的两个命题同真假,即可判断;【详解】解:因为命题“,则”为真命题,所以其逆否命题也为真命题;其逆命题为:则,显然也为真命题,故其否命题也为真命题;故命题“,则”及其逆命题、否命题和逆否命题这四个命题中,真命题有4个;故选:D11、B【解析】取AD中点为G,连接GF、GE,易知△EFG为等腰三角形,且∠EGF为异面直线AC和BD所成角或其补角,据此可求∠FEG大小,从而得EF和AC所成的角的大小【详解】如图,取AD中点为G,连接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF为异面直线AC和BD所成角或其补角,故∠EGF=60°或120°故EF和AC所成角为∠FEG或其补角,当∠EGF=60°时,∠FEG=60°,当∠EGF=120°时,∠FEG=30°,∴EF和AC所成的角等于30°或60°故选:B12、A【解析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【点睛】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题:本题共4小题,每小题5分,共20分。13、①.1②.【解析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得,然后根据等比数列的通项公式及等比数列的前n项和的公式即可求解.【详解】设第n个正方形的边长为,第n个正方形的面积为,则第n个正方形的对角线长为,所以第n+1个正方形的边长为,,∴数列{}是首项为,公比为的等比数列,,∴,即第7个正方形的边长为1;∴数列{}是首项为,公比为的等比数列,故答案为:1;.14、(1)证明见解析;(2);(3)2021【解析】(1)将两边都加,证明是常数即可;(2)求出的通项,利用错位相减法求解即可;(3)先求出,再求出的表达式,利用裂项相消法即可得解.【详解】(1)将两边都加,得,而,即有,又,则,,所以数列是首项为,公比为的等比数列;(2)由(1)知,,则,,,因此,,所以;(3)由(2)知,于是得,则,因此,,所以不超过的最大的整数是202115、①.3②.5【解析】根据茎叶图进行数据分析,列方程求出x、y.【详解】由题意,甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.要使两组数据中位数相等,有65=60+y,所以y=5.又平均数相同,则,解得x=3.故答案为:3;5.16、2【解析】根据等差数列性质求得,再根据题意列出相关的方程组,解得答案.【详解】为等差数列,故由可得:,即,故,故,所以,解得,故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析【解析】(1)分别求得和,从而得到切线方程;(2)求导后,令求得两根,分别在、和三种情况下根据导函数的正负得到函数的单调区间.【详解】(1),,,,又,在处的切线方程为.(2),令,解得:,.①当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;②当时,在上恒成立,的单调递增区间为,无单调递减区间;③当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;综上所述:当时,的单调递增区间为,;单调递减区间为;当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为,;单调递减区间为.【点睛】本题考查利用导数的几何意义求解曲线在某一点处的切线方程、利用导数讨论含参数函数的单调区间的问题,属于常考题型.18、(1);(2)存在,1;(3)证明见解析.【解析】(1)根据几何关系即可求p;(2)求解为定值1,即可求λ=1;(3)先求的面积,再由(为三角周长)可求内切圆半径r.【小问1详解】由题意焦点到准线的距离等于该正三角形一条边上的高线,因此,∴抛物线E的方程为【小问2详解】设直线的斜率为,直线方程为,记,,消去,得由,得且,,,,因此,即存在实数满足要求【小问3详解】由(2)知,,点F到直线AB的距离,∴的面积记的内切圆半径为r,∵,∴∴内切圆的面积小于19、(1){x|2<x<4};(2).【解析】(1)分别求出命题和为真时对应的取值范围,即可求出;(2)由题可知,列出不等式组即可求解.【详解】解:(1)当a=2时,命题q:2<x<4,∵命题p:x≤2或x>6,,又为真命题,∴x满足,∴2<x<4,∴实数x的取值范围{x|2<x<4};(2)由题意得:命题q:a<x<2a;∵q是的充分不必要条件,,,解得,∴实数a的取值范围.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分又不必要条件,则对应的集合与对应集合互不包含20、(1)(2)【解析】(1)根据题意列方程组求解(2)待定系数法设直线后,由条件求出坐标后代入双曲线方程求解【小问1详解】,解得,故双曲线方程为【小问2详解】,故设直线方程为则,由得:故,点在双曲线上,则,解得直线l的斜率为21、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角坐标系,设,即可得到点,,的坐标,最后利用空间向量法求出二面角的余弦值;小问1详解】证明:连接DE因为,且D为AC的中点,所以因为,且D为AC的中点,所以因为平面BDE,平面BDE,且,所以平面因为,所以平面BDE,所以【小问2详解】解:由(1)可知因为平面平面,平面平面,平面,所以平面,所以DC,DB,DE两两垂直以D为原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系设.则,,.从而,设平面BCE的法向量为,则令,得平面ABC的一个法向量为设二面角为,由图可知为锐角,则22、(1)证明见解析;(2)证明见解析;(3)【解析】(1)由直线与平面垂直证明直线与平行的垂直;(2)证明直线与平面平行;(3)求三棱锥的体积就用体积公式.(1)在三棱柱中,底面ABC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论