2025届湖北省黄冈八模高二数学第一学期期末质量检测模拟试题含解析_第1页
2025届湖北省黄冈八模高二数学第一学期期末质量检测模拟试题含解析_第2页
2025届湖北省黄冈八模高二数学第一学期期末质量检测模拟试题含解析_第3页
2025届湖北省黄冈八模高二数学第一学期期末质量检测模拟试题含解析_第4页
2025届湖北省黄冈八模高二数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省黄冈八模高二数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在数列中抽取部分项(按原来的顺序)构成一个新数列,记为,再在数列插入适当的项,使它们一起能构成一个首项为1,公比为3的等比数列.若,则数列中第项前(不含)插入的项的和最小为()A.30 B.91C.273 D.8202.函数单调减区间是()A. B.C.和 D.3.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C若,则 D.若,则4.已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条 B.3条C.2条 D.1条5.某中学为了解高三男生的体能情况,通过随机抽样,获得了200名男生的100米体能测试成绩(单位:秒),将数据按照,,…,分成9组,制成了如图所示的频率分布直方图.规定成绩低于13秒为优,成绩高于14.8秒为不达标.由直方图推断,下列选项错误的是()A.直方图中a的值为0.40B.由直方图估计本校高三男生100米体能测试成绩的众数为13.75秒C.由直方图估计本校高三男生100米体能测试成绩为优的人数为54D.由直方图估计本校高三男生100米体能测试成绩为不达标的人数为186.命题“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得7.已知,则的大小关系为()A. B.C. D.8.函数在(0,e]上的最大值为()A.-1 B.1C.0 D.e9.已知椭圆的两焦点分别为,,P为椭圆上一点,且,则的面积等于()A.6 B.C. D.10.已知分别是等差数列的前项和,且,则()A. B.C. D.11.某次射击比赛中,某选手射击一次击中10环的概率是,连续两次均击中10环的概率是,已知某次击中10环,则随后一次击中10环的概率是A. B.C. D.12.中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生人,学校团委为了了解本校学生到上述红色基地研学旅行的情况,随机调查了名学生,其中到过中共一大会址或井冈山研学旅行的共有人,到过井冈山研学旅行的人,到过中共一大会址并且到过井冈山研学旅行的恰有人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有()人A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆的一条直径的端点是、,则此圆的方程是_______14.围棋是一种策略性两人棋类游戏.已知某围棋盒子中有若干粒黑子和白子,从盒子中取出2粒棋子,2粒都是黑子的概率为,2粒恰好是同一色的概率比不同色的概率大,则2粒恰好都是白子的概率是______15.抛物线的准线方程为_______.16.已知方程表示焦点在x轴上的双曲线,则m的取值范围为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,斜率为的动直线与椭圆交于A,B两点,且直线与圆相切.(1)若,求直线的方程;(2)求三角形的面积的取值范围.18.(12分)已知函数,在处有极值.(1)求、的值;(2)若,有个不同实根,求的范围.19.(12分)在中,角A、B、C的对边分别为a、b、c,已知,且.(1)求的面积;(2)若a、b、c成等差数列,求b的值.20.(12分)一个小岛的周围有环岛暗礁,暗礁分布在以小岛中心为圆心,半径为的圆形区域内(圆形区域的边界上无暗礁),已知小岛中心位于轮船正西处,港口位于小岛中心正北处.(1)若,轮船直线返港,没有触礁危险,求的取值范围?(2)若轮船直线返港,且必须经过小岛中心东北方向处补水,求的最小值.21.(12分)在平面直角坐标系中,设点,直线,点P在直线l上移动,R是线段PF与y轴的交点,也是PF的中点.,(1)求动点Q的轨迹的方程E;(2)过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求直线MN过定点R的坐标22.(10分)已知中,分别为角的对边,且(1)求;(2)若为边的中点,,求的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先根据等比数列的通项公式得到,列出数列的前6项,将其中是数列的项的所有数去掉即可求解.【详解】因为是以1为首项、3为公比的等比数列,所以,则由,得,即数列中前6项分别为:1、3、9、27、81、243,其中1、9、81是数列的项,3、27、243不是数列的项,且,所以数列中第7项前(不含)插入的项的和最小为.故选:C.2、B【解析】根据函数求导,然后由求解.【详解】因为函数,所以,由,解得,所以函数的单调递减区间是,故选:B3、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C4、A【解析】利用双曲线渐近线的性质,结合一元二次方程根的判别式进行求解即可.【详解】解:双曲线的渐近线方程为,右顶点为.①直线与双曲线只有一个公共点;②过点平行于渐近线时,直线与双曲线只有一个公共点;③设过的切线方程为与双曲线联立,可得,由,即,解得,直线的条数为1.综上可得,直线的条数为4.故选:A,.5、D【解析】根据频率之和为求得,结合众数、频率等知识对选项进行分析,从而确定正确答案.【详解】,解得,A选项正确.众数为,B选项正确.成绩低于秒的频率为,人数为,所以C选项正确.成绩高于的频率为,人数为人,D选项错误.故选:D6、D【解析】的否定是,的否定是,的否定是.故选D【考点】全称命题与特称命题的否定【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定7、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B8、A【解析】对函数求导,然后求出函数的单调区间,从而可求出函数的最大值【详解】由,得,当时,,当,,所以在上单调递增,在上单调递减,所以当时,取得最大值,故选:A9、B【解析】根据椭圆定义和余弦定理解得,结合三解形面积公式即可求解【详解】由与是椭圆上一点,∴,两边平方可得,即,由于,,∴根据余弦定理可得,综上可解得,∴的面积等于,故选:B10、D【解析】利用及等差数列的性质进行求解.【详解】分别是等差数列的前项和,故,且,故,故选:D11、B【解析】根据条件概率的计算公式,得所求概率为,故选B.12、B【解析】作出韦恩图,设调查的学生中去过中共一大会址研学旅行的学生人数为,根据题意求出的值,由此可得出该学校到过中共一大会址研学旅行的学生人数.【详解】如下图所示,设调查的学生中去过中共一大会址研学旅行的学生人数为,由题意可得,解的,因此,该学校到过中共一大会址研学旅行的学生的人数为.故选:B.【点睛】本题考查韦恩图的应用,同时也考查了利用分层抽样求样本容量,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设圆上任意一点的坐标,然后利用直径对应的圆周角为直角,再利用向量垂直建立方程即可【详解】设圆上任意一点的坐标为可得:,则有:,即解得:故答案为:14、【解析】根据互斥事件与对立事件概率公式求解即可【详解】设“2粒都是黑子”为事件,“2粒都是白子”为事件,“2粒恰好是同一色”为事件,“2粒不同色”为事件,则事件与事件是对立事件,所以因为2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件与互斥,所以,所以故答案为:15、【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2p=1,∴其准线方程是y=,故答案为16、【解析】根据焦点在轴的双曲线的标准方程的特征可得答案.【详解】因为双曲线的焦点在轴上,则,解得.所以的取值范围为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)设直线,利用圆心到直线的距离等于半径,即可得到方程,求出,即可得解;(2)设,,,利用圆心到直线的距离等于半径,得到,再联立直线与椭圆方程,消元列出韦达定理,利用弦长公式表示出,再根据及基本不等式求出,最后再计算直线斜率不存在时三角形的面积,即可得解;【小问1详解】解:圆,圆心为,半径;设直线,即,则,解得,所以或;【小问2详解】解:因为直线的斜率存在,设,,,即,则,所以,即,联立,消元整理得,所以,,所以所以因为,所以,当且仅当,即时取等号,所以,当轴时,取,,则,此时,所以;18、(1),(2)【解析】(1)根据题设条件可得,由此可解得与的值(2)依题意可知直线与函数的图象有三个不同的交点,则的取值范围介于极小值与极大值之间.【小问1详解】因为函数,在处有极值,所以,即,解得,.【小问2详解】由(1)知,,所以在上,,单调递增,在上,,单调递减,在上,,单调递增,所以,,若有3个不同实根,则,所以的取值范围为.19、(1);(2).【解析】(1)先利用数量积和余弦值得到,再利用面积公式计算即得结果;(2)根据等差数列得到,再结合余弦定理进行运算得到关于b的关系,求值即可.【详解】(1)由得,所以,所以,所以,所以;(2)因为a、b、c成等差数列,所以,由余弦定理得,即,解得.20、(1)(2)120【解析】(1)建立平面直角坐标系设直线方程,根据点到直线的距离公式可得;(2)先求补水点的坐标,根据直线过该点,结合所求,根据基本不等式可得.【小问1详解】根据题意,以小岛中心为原点,建立平面直角坐标系,当时,则轮船返港的直线为,因为没有触礁危险,所以原点到的距离,解得.【小问2详解】根据题意可得,,点C在直线上,故点C,设轮船返港的直线是,则,所以.当且仅当时取到最小值.21、(1)(2)【解析】(1)由图中的几何关系可知,故可知动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即可直接写出抛物线的方程;(2)设出直线AB的方程,把点、的坐标代入抛物线方程,两式作差后,再利用中点坐标公式求出点M的坐标,同理求出点的坐标,即可求出直线MN的方程,最后可求出直线MN过哪一定点.【小问1详解】∵直线的方程为,点R是线段FP的中点且,∴RQ是线段FP的垂直平分线,∵,∴是点Q到直线l的距离,∵点Q在线段FP的垂直平分线,∴,则动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即动点Q轨迹的方程为.【小问2详解】设,,由题意直线AB斜率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论