版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页四川省绵阳富乐园际学校2024-2025学年九年级数学第一学期开学经典模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各式中,是二次根式的是()A. B. C. D.2、(4分)将抛物线平移,使它平移后图象的顶点为,则需将该抛物线()A.先向右平移个单位,再向上平移个单位 B.先向右平移个单位,再向下平移个单位C.先向左平移个单位,再向上平移个单位 D.先向左平移个单位,再向下平移个单位3、(4分)若,则的值为()A.14 B.16 C.18 D.204、(4分)以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.9,12,15 C.,2, D.0.3,0.4,0.55、(4分)一次函数y=ax+1与y=bx-2的图象交于x轴上同一个点,那么a∶b的值为()A.1∶2B.-1∶2C.3∶2D.以上都不对6、(4分)如图,▱ABCD的对角线AC、BD相交于点O,已知AD=10,BD=14,AC=8,则△OBC的周长为()A.16 B.19 C.21 D.287、(4分)如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是()A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时8、(4分)如图,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=110°,则∠D=()A.140° B.120° C.110° D.100°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)数据6,5,7,7,9的众数是.10、(4分)如图,已知△ABC∽△ADB,若AD=2,CD=2,则AB的长为_____.11、(4分)写出一个比2大比3小的无理数(用含根号的式子表示)_____.12、(4分)参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x人参加同学聚会.列方程得____.13、(4分)如图为某班35名学生投篮成绩的条形图,其中上面部分数据破损导致数据不完全,已知此班学生投篮成绩的中位数是5,下列选项正确的是_______.①3球以下(含3球)的人数;②4球以下(含4球)的人数;③5球以下(含5球)的人数;④6球以下(含6球)的人数.三、解答题(本大题共5个小题,共48分)14、(12分)为提高市民的精神生活美化城市环境,城市管理局从外地新进一批绿化树苗,现有两种运输方式可供选择,方式一:使用快递公司的邮车运输,装卸收费500元,另外每公里再加收5元;方式二:使用铁路运输公司的火车运输,装卸收费900元,另外每公里再加收3元.(1)请分别写出邮车、火车运输的总费用为(元)、(元)与运输路程(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?15、(8分)为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<70a0.2870≤x<80160.3280≤x<90100.2090≤x≤100cb合计501.00(1)表中的a=______,b=______,c=______;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;(3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.16、(8分)在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)试证明在旋转过程中,△MNO的边MN上的高为定值;(4)设△MBN的周长为p,在旋转过程中,p值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出p的值.17、(10分)如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=1.求证:四边形ABCD是矩形.18、(10分)如图,,点分别在线段上,且求证:已知分别是的中点,连结①若,求的度数:②连结当的长为何值时,四边形是矩形?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S甲2=0.90平方环,S乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__.20、(4分)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(-10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是______.21、(4分)双曲线,在第一象限的图象如图,过上的任意一点,作轴的平行线交于点,交轴于点,若,则的值为__________.22、(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于_____.23、(4分)若代数式在实数范围内有意义,则x的取值范围是_______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,AD∥BC,AC⊥AB,AB=3,AC=CD=1.(1)求BC的长;(1)求BD的长.25、(10分)如图1,在中,,,,以OB为边,在外作等边,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为边向右上方作正方形APMN:①M点的坐标为.②直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分).26、(12分)如图,在四边形ABCD中,BD垂直平分AC,垂足为F,分别过点B作直线BE∥AD,过点A作直线EA⊥AC于点A,两直线交于点E.(1)求证:四边形AEBD是平行四边形;(2)如果∠ABE=∠ABD=60°,AD=2,求AC的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据二次根式的定义逐一判断即可.【详解】A、是二次根式,故此选项正确;B、,根号下不能是负数,故不是二次根式;C、是立方根,故不是二次根式;D、,根号下不能是负数,故不是二次根式;故选A.本题考查了二次根式的定义:形如(a≥0)叫二次根式.2、C【解析】
先把抛物线化为顶点式,再根据函数图象平移的法则进行解答即可.【详解】∵抛物线可化为∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位.故选C.本题考查二次函数图像,熟练掌握平移是性质是解题关键.3、C【解析】
先将移项得:,然后两边平方,再利用完全平方公式展开,整理即可得解.【详解】∵,∴,∴,∴,故选C.本题考查了完全平方公式,牢牢掌握平方公式是解决本题的关键.4、C【解析】
通过边判断构成直角三角形必须满足,两短边的平方和=长边的平方.即通过勾股定理的逆定理去判断.【详解】A.,能构成直角三角形B.,构成直角三角形C.,不构成直角三角形D.,构成直角三角形故答案为C本题考查了勾股定理的逆定理:如果三角形的的三边满足,那么这个三角形为直角三角形.5、B【解析】试题分析:先根据x轴上的点的横坐标相等表示出x的值,再根据相交于同一个点,则x值相等,列式整理即可得解.解:∵两个函数图象相交于x轴上同一个点,∴y=ax+1=bx﹣1=0,解得x=﹣=,所以=﹣,即a:b=(﹣1):1.故选B.6、C【解析】
由平行四边形的性质得出OA=OC=4,OB=OD=7,BC=AD=10,即可求出△OBC的周长.【详解】∵四边形ABCD是平行四边形,∴OA=OC=4,OB=OD=7,BC=AD=10,∴△OBC的周长=OB+OC+AD=4+7+10=1.故选:C.本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7、D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.8、D【解析】
根据平行线的性质求出∠B,根据等腰三角形性质求出∠CAB,推出∠DAC,求出∠DCA,根据三角形的内角和定理求出即可.【详解】解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠BAD=110°
∴∠B=70°,
∵AC=BC,
∴∠B=∠BAC=70°,
∴∠DAC=110°-70°=40°,
∵AD=DC,
∴∠DAC=∠DCA=40°,
∴∠D=180°-∠DAC-∠DCA=100°,
故选:D.本题考查了梯形,平行线的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】试题分析:数字1出现了2次,为出现次数最多的数,故众数为1,故答案为1.考点:众数.10、2.【解析】
利用相似三角形的性质即可解决问题.【详解】∵△ABC∽△ADB,∴,∴AB2=AD•AC=2×4=8,∵AB>0,∴AB=2,故答案为:2.此题考查相似三角形的性质定理,相似三角形的对应边成比例.11、【解析】【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【详解】∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为:.【点睛】本题考查了估算无理数的大小,熟练掌握利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12、x(x﹣1)=1【解析】
利用一元二次方程应用中的基本数量关系:x人参加聚会,两人只握一次手,握手总次数为x(x-1)解决问题即可.【详解】由题意列方程得,x(x-1)=1.故答案为:x(x-1)=1.本题考查了一元二次方程的应用,熟知x人参加聚会,两人只握一次手,握手总次数为x(x-1)这一基本数量关系是解题的关键.13、①②④【解析】
根据题意和条形统计图中的数据可以求得各个选项中对应的人数,从而可以解答本题.【详解】因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图的范围在6以上,所以投4个球的有7人.可得:3球以下(含3球)的人数为10人,4球以下(含4球)的人数10+7=17人,6球以下(含6球)的人数35-1=1.故只有5球以下(含5球)的人数无法确定.故答案为①②④本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.同时理解中位数的概念.三、解答题(本大题共5个小题,共48分)14、(1),;(2)当运输路程等于200千米时,,用两种运输方式一样;当运输路程小于200千米时,,用邮车运输较好;当运输路程大于200千米时,,用火车运输较好.【解析】
(1)根据方式一、二的收费标准即可得出y1(元)、y2(元)与运输路程x(公里)之间的函数关系式.(2)比较两种方式的收费多少与x的变化之间的关系,从而根据x的不同选择合适的运输方式.【详解】解:(1)由题意得:,;(2)令,解得,∴当运输路程等于200千米时,,用两种运输方式一样;当运输路程小于200千米时,,用邮车运输较好;当运输路程大于200千米时,,用火车运输较好.此题考查了一次函数的应用,解答本题的关键是根据题意所述两种运输方式的收费标准,得出总费用y1(元)、y2(元)与运输路程x(公里)关系式.15、(1)14;0.08;4;(2)详见解析;(3)80.【解析】
(1)根据频率分布表确定出总人数,进而求出a,b,c的值即可;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图,如图所示;(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.【详解】解:(1)根据题意得:a=6÷0.12×0.28=14,b=1﹣(0.12+0.28+0.32+0.20)=0.08,c=6÷0.12×0.08=4;故答案为:14;0.08;4;(2)频数分布直方图、折线图如图,(3)根据题意得:1000×(4÷50)=80(人),则你估计该校进入决赛的学生大约有80人.此题考查了频数(率)分布折线图,用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.16、(1)OA在旋转过程中所扫过的面积为0.5π;(1)旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为25°-11.5°=11.5度;(3)MN边上的高为1(2)在旋转正方形OABC的过程中,p值无变化.见解析.【解析】
(1)过点M作MH⊥y轴,垂足为H,如图1,易证∠MOH=25°,然后运用扇形的面积公式就可求出边OA在旋转过程中所扫过的面积.
(1)根据正方形和平行线的性质可以得到AM=CN,从而可以证到△OAM≌△OCN.进而可以得到∠AOM=∠CON,就可算出旋转角∠HOA的度数.
(3)过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,易证△OAE≌△OCN,从而得到OE=ON,AE=CN,进而可以证到△OME≌△OMN,从而得到∠OME=∠OMN,然后根据角平分线的性质就可得到结论.
(2)由△OME≌△OMN(已证)可得ME=MN,从而可以证到MN=AM+CN,进而可以推出p=AB+BC=2,是定值.【详解】解:(1)过点M作MH⊥y轴,垂足为H,如图1,
∵点M在直线y=x上,
∴OH=MH.
在Rt△OHM中,
∵tan∠MOH==1,
∴∠MOH=25°.
∵A点第一次落在直线y=x上时停止旋转,
∴OA旋转了25°.
∵正方形OABC的边长为1,
∴OA=1.
∴OA在旋转过程中所扫过的面积为=0.5π.∵A点第一次落在直线y=x上时停止旋转,∴OA旋转了25度.∴OA在旋转过程中所扫过的面积为0.5π.(1)∵MN∥AC,∴∠BMN=∠BAC=25°,∠BNM=∠BCA=25度.∴∠BMN=∠BNM.BM=BN.又∵BA=BC,AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON.∴∠AOM=1/1(90°-25°)=11.5度.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为25°-11.5°=11.5度.(3)证明:过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,
则∠AOE=25°-∠AOM,∠CON=90°-25°-∠AOM=25°-∠AOM.
∴∠AOE=∠CON.
在△OAE和△OCN中,
.
∴△OAE≌△OCN(ASA).
∴OE=ON,AE=CN.
在△OME和△OMN中∴△OME≌△OMN(SAS).
∴∠OME=∠OMN.
∵MA⊥OA,MF⊥OF,
∴OF=OA=1.
∴在旋转过程中,△MNO的边MN上的高为定值.MN边上的高为1;(2)在旋转正方形OABC的过程中,p值不变化.
证明:延长BA交y轴于E点,则∠AOE=25°-∠AOM,∠CON=90°-25°-∠AOM=25°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=25°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.∴在旋转正方形OABC的过程中,p值无变化.故答案为:(1)OA在旋转过程中所扫过的面积为0.5π;(1)旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为25°-11.5°=11.5度;(3)MN边上的高为1(2)在旋转正方形OABC的过程中,p值无变化.见解析.本题考查正方形的性质、全等三角形的判定与性质、角平分线的性质、平行线的性质、扇形的面积公式、等腰三角形的判定、特殊角的三角函数值等知识,有一定的综合性.而本题在图形旋转的过程中探究不变的量,渗透了变中有不变的辩证思想.17、详见解析.【解析】
已知AB∥CD,∠BAD=90°,由平行线的性质可得∠ADC=90°,在△ABC中,AB=5,BC=12,AC=1,根据勾股定理的逆定理得出∠B=90°,即可得四边形ABCD是矩形.【详解】证明:四边形ABCD中,AB∥CD,∠BAD=90°,∴∠ADC=90°,又∵△ABC中,AB=5,BC=12,AC=1,∵12=52+122,∴△ABC是直角三角形,且∠B=90°,∴四边形ABCD是矩形.18、(1)详情见解析;(2)①15°,②【解析】
(1)通过证明△ABD≅△ACE进一步求证即可;(2)①连接AF、AG,利用直角三角形斜边的中线等于斜边的一半求出AF=BD=BF,AG=CE=GC,由此进一步证明△AFG为等边三角形,最后利用△ABF≅△ACG进一步求解即可;②连接BC,再连接EF、DG并延长分别交BC于点M、N,首先根据题意求得BM=DE=NC,然后利用△ABC~△AED进一步求解即可.【详解】(1)在△ABD与△ACE中,∵AB=AC,∠A=∠A,AD=AE,∴△ABD≅△ACE(SAS),∴BD=CE;(2)①连接AF、AG,∵AF、AG分别为Rt△ABD、Rt△ACE的斜边中线,∴AF=BD=BF,AG=CE=GC,又∵BD=CE,FG=BD,∴AF=AG=FG,∴△AFG为等边三角形,易证△ABF≅△ACG(SSS),∴∠BAF=∠B=∠C=∠CAG,∴∠C=15°;②连接BC、DE,再连接EF、DG并延长分别交BC于点M、N,∵△ABC与△AED都是等腰直角三角形,∴DE∥BC,∵F、G分别是BD、CE的中点,∴易证△DEF≅△BMF,△DEG≅△NCG(ASA),∴BM=DE=NC,若四边形DEFG为矩形,则DE=FG=MN,∴,∵DE∥BC,∴△ABC~△AED,∴,∵AC=4,∴AD=,∴当AD的长为时,四边形DEFG为矩形.本题主要考查了全等三角形性质与判定和相似三角形性质与判定及直角三角形性质和矩形性质的综合运用,熟练掌握相关概念是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、甲【解析】试题分析:当两人的平均成绩相同时,如果方差越小则说明这个人的成绩越稳定.20、(-4,3),或(-1,3),或(-9,3)【解析】∵A(-10,0),C(0,3),,.∵点D是OA的中点,.当时,,.当时,,,当时,,.当时,不合题意.故答案有三种情况.【点睛】本题考查了矩形的性质,等腰三角形的概念,平面直角坐标系中点的坐标及分类的思想.涉及等腰三角形的计算,不管是角的计算还是腰的计算,一般都要进行分类讨论.像本题就要分四种情况进行计算.21、1【解析】
根据S△AOC-S△BOC=S△AOB,列出方程,求出k的值.【详解】由题意得:S△AOC-S△BOC=S△AOB,
=1,
解得,k=1,
故答案为:1.此题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.根据面积关系得出方程是解题的关键.22、1.【解析】
利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可.【详解】设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴,解得,∴y=1x+1,将点(a,10)代入解析式,则a=1;故答案为:1.此题考查待定系数法求一次函数的解析式,正确理解题意,利用一次函数解析式确定点的横坐标a的值.23、【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.二、解答题(本大题共3个小题,共30分)24、(1)BC=;(1)BD=2【解析】
(1)在Rt△ABC中利用勾股定理即可求出BC的长;
(1)过点B作BE⊥DC交DC的延长线于点E.根据等边对等角的性质以及平行线的性质得出∠1=∠3,利用角平分线的性质得出AB=BE=3,在Rt△BCE中,根据勾股定理可得EC=1,则ED=4,在Rt△BDE中,利用勾股定理可得BD=2.【详解】(1)在Rt△ABC中,∵AC⊥AB,AB=3,AC=1,∴BC=;(1)过点B作BE⊥DC交DC的延长线于点E.∵AC=CD,∴∠1=∠ADC,又∵AD∥BC,∴∠3=∠ADC,∠1=∠1,∴∠1=∠3,又∵AC⊥AB,BE⊥DC,∴AB=BE=3,又由(1)BC=,在Rt△BCE中,由勾股定理可得EC=1;∴ED=1+1=4,在Rt△BDE中,由勾股定理可得BD=2.本题考查了勾股定理,等腰三角形、平行线、角平分线的性质,掌握各定理是解题的关键.25、(1)见解析;(2),;(3)①;②【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度个人与公司间代收代付业务合同范本3篇
- 2025年度年度城市绿化劳务承包综合服务版合同3篇
- 二零二五年度公司施工队高速公路施工合作协议3篇
- 2025年度航空航天实验室航天器研发与制造合同3篇
- 二零二五年度冷库租赁及冷链物流运输保障合同
- 二零二五年度冷链运输及冷链设备维修服务合同
- 二零二五年度航空航天材料研发全新期权合同3篇
- 2025年度智能门锁用户购买合同3篇
- 二零二五年度金融机构对赌协议合同-信贷业务与风险控制3篇
- 2025年度人工智能公司合伙人股权分配与战略规划合同3篇
- 人教版三年级数学上册第七单元《长方形和正方形》(大单元教学设计)
- DBJ50-T-417-2022 建筑施工高处坠落防治安全技术标准
- 五年级上册英语教案-Unit 4 Lesson 21 What Year Is It-冀教版
- 学年上学期期末职业高中高二年级数学练习试卷3
- 北大青鸟消防主机操作培训
- 外科学 手术 基础
- 2024年03月乌鲁木齐海关所属事业单位2024年面向社会公开招考14名工作人员笔试参考题库附带答案详解
- 疾控中心慢病科工作总结
- 锚索张拉伸长量计算
- 汽车保险与理赔教案
- 2024年度医院皮肤科医务人员绩效述职统计报告课件
评论
0/150
提交评论