版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页四川省德阳地区2024年九上数学开学统考模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A. B. C. D.2、(4分)若2019个数、、、…、满足下列条件:,,,…,,则(
)A.-5047 B.-5045 C.-5040 D.-50513、(4分)如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A. B. C. D.4、(4分)分式方程有增根,则的值为A.0和3 B.1 C.1和 D.35、(4分)下面几个函数关系式中,成正比例函数关系的是()A.正方体的体积和棱长B.正方形的周长和边长C.菱形的面积一定,它的两条对角线长D.圆的面积与它的半径6、(4分)点P(-2,3)到x轴的距离是()A.2 B.3 C. D.57、(4分)已知多项式是一个关于的完全平方式,则的值为()A.3 B.6 C.3或-3 D.6或-68、(4分)如图,正方形在平面直角坐标系中的点和点的坐标为、,点在双曲线上.若正方形沿轴负方向平移个单位长度后,点恰好落在该双曲线上,则的值是()A.1 B.2 C.3 D.4二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)当m=____时,关于x的分式方程无解.10、(4分)如图,菱形ABCD中,AC、BD交于点O,DE⊥BC于点E,连接OE,若∠ABC=120°,则∠OED=______.11、(4分)某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数如表,则该周PM2.5指数的众数和中位数分别是________PM2.5指数150155160165天数321112、(4分)如图,在平面直角坐标系中,点A为,点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数的图象经过点C和AB的中点D,反比例函数图象经过点B,则的值为______.13、(4分)如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为_____________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,正方形的边长为2,边在轴上,的中点与原点重合,过定点与动点的直线记作.(1)若的解析式为,判断此时点是否在直线上,并说明理由;(2)当直线与边有公共点时,求的取值范围.15、(8分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.16、(8分)求证:矩形的对角线相等要求:画出图形,写出已知,求证和证明过程17、(10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:型号甲乙每台每小时分拣快递件数(件)1000800每台价格(万元)53该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件(1)设购买甲种型号的机器人x台,购买这10台机器人所花的费用为y万元,求y与x之间的关系式;(2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?18、(10分)如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60°方向走了m到达点B,然后再沿北偏西30°方向走了50m到达目的地C。(1)求A、C两点之间的距离;(2)确定目的地C在营地A的北偏东多少度方向。B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.20、(4分)若一个三角形的三边长分别为5、12、13,则此三角形的面积为.21、(4分)如图,在平面直角坐标系xOy中,函数y1的图象与直线y1=x+1交于点A(1,a).则:(1)k的值为______;(1)当x满足______时,y1>y1.22、(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.23、(4分)当x___________时,是二次根式.二、解答题(本大题共3个小题,共30分)24、(8分)解下列方程:(1)(2)25、(10分)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;(4)连结PG,当PG∥AB时,请直接写出t的值.26、(12分)计算题:(1);(2);(3);(4).
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.2、A【解析】
通过前面几个数的计算,根据数的变化可得出从第3个数开始,按-2,-3依次循环,按此规律即可得出的值,【详解】解:依题意,得:,,,,,,……由上可知,这2019个数从第三个数开始按−2,−3依次循环,故这2019个数中有1个2,1个−7,1009个−2,1008个−3,∴=2−7−2×1009−3×1008=−5047,故选:A.本题主要考查了规律型:数字的变化类,找到规律是解题的关键.3、B【解析】
根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.【详解】如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=•AE•BF,∴BF=.故选:B.本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.4、D【解析】
等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x1=1或x1=﹣1分别打入一元一次方程后求出m,再验证m取该值时是否有根即可.【详解】∵分式方程-1=有增根,∴x﹣1=0,x+1=0,∴x1=1,x1=﹣1.两边同时乘以(x﹣1)(x+1),原方程可化为x(x+1)﹣(x﹣1)(x+1)=m,整理得,m=x+1,当x=1时,m=1+1=2;当x=﹣1时,m=﹣1+1=0,当m=0,方程无解,∴m=2.故选D.5、B【解析】
根据正比例函数的定义进行判断.【详解】解:A、设正方体的体积为V,棱长为a,则V=a3,不符合正比例函数的定义,故本选项错误;B、设正方形的周长为C,边长为a,则C=4a,符合正比例函数的定义,故本选项正确;C、设菱形面积为S,两条对角线长分别为m,n,则S=mn,不符合正比例函数的定义,故本选项错误;D、设圆的面积为S,半径为r,则S=πr2,不符合正比例函数的定义,故本选项错误;故选:B.本题主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.6、B【解析】
直接利用点的坐标性质得出答案.【详解】点P(-2,1)到x轴的距离是:1.故选B.此题主要考查了点的坐标,正确把握点的坐标性质是解题关键.7、D【解析】
利用完全平方公式的结构特征判断即可确定出m的值.【详解】∵x2+mx+9是关于x的完全平方式,∴x2+mx+9=x2±2×3×x+9∴m=±6,故选:D.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8、B【解析】
过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于,根据全等三角形的判定和性质,可得到点坐标和点坐标,从而求得双曲线函数未知数和平移距离.【详解】过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于.,,,.又,,,点坐标为将点坐标为代入,可得=4.与同理,可得到,,点坐标为,正方形沿轴负方向平移个单位长度后,点坐标为将点坐标为代入,可得=2.故选B.本题综合考查反比例函数中未知数的求解、全等三角形的性质与判定、图形平移等知识.涉及图形与坐标系结合的问题,要学会通过辅助线进行求解.二、填空题(本大题共5个小题,每小题4分,共20分)9、-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.10、30°【解析】
根据直角三角形的斜边中线性质可得OE=BE=OD,根据菱形性质可得∠DBE=∠ABC=60°,从而得到∠OEB度数,再依据∠OED=90°-∠OEB即可.【详解】∵四边形ABCD是菱形,
∴O为BD中点,∠DBE=∠ABC=60°.
∵DE⊥BC,
∴在Rt△BDE中,OE=BE=OD,
∴∠OEB=∠OBE=60°.
∴∠OED=90°-60°=30°.
故答案是:30°考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.11、150,1【解析】
根据众数和中位数的概念求解.【详解】这组数据按照从小到大的顺序排列为:150,150,150,1,1,160,165,则众数为:150,中位数为:1.故答案为:150,1此题考查中位数,众数,解题关键在于掌握其概念12、【解析】
过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到.【详解】如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,又,,∽,又是AB的中点,,,设,则,,,,,反比例函数的图象经过点C和AB的中点D,,解得,,又,,,故答案为.本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13、1.【解析】试题分析:在□ABCD中,BD为对角线,E、F分别是AD,BD的中点,所以EF是△DAB的中位线,因为EF=3,所以AB=1,所以DC=1.考点:中位线和平行四边形的性质点评:该题较为简单,主要考查学生对三角形中位线的性质和平行四边形性质的掌握程度.三、解答题(本大题共5个小题,共48分)14、(1)点在直线上,见解析;(2)的取值范围是.【解析】
(1)把点A代入解析式,进而解答即可;(2)求出直线经过点时的解析式,可知此时t的值,再根据(1)中解析式t的值可得取值范围.【详解】解:(1)此时点在直线上,∵正方形的边长为2∴∵点为中点,∴点,,把点的横坐标代入解析式,得,等于点的纵坐标为2.∴此时点在直线上.(2)由题意可得,点及点,当直线经过点时,设的解析式为()∴解得∴的解析式为.当时,又由,可得当时,∴当直线与边有公共点时,的取值范围是.本题考查了一次函数的性质,一次函数图象上点的坐标特征,正方形的性质,掌握判断点是否在直线上的方法以及利用待定系数法求解析式是解题的关键.15、(1)证明见解析;(2)证明见解析.【解析】
(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.又∵AC是折痕,∴BC=CE=AD,AB=AE=CD.又∵DE=ED,∴ΔADE≌ΔCED(SSS);(2)∵ΔADE≌ΔCED,∴∠EDC=∠DEA,又∵ΔACE与ΔACB关于AC所在直线对称,∴∠OAC=∠CAB.又∵∠OCA=∠CAB,∴∠OAC=∠OCA.∵∠DOE=∠COA,∴∠OAC=∠DEA,∴DE∥AC.考点:1.折叠问题;2.矩形的性质;3.折叠对称的性质;4.全等三角形的判定和性质;5.平行的判定.16、证明见解析.【解析】分析:由“四边形ABCD是矩形”得知,AB=CD,AD=BC,矩形的四个角都是直角,再根据全等三角形的判定原理SAS判定全等三角形,由此,得出全等三角形的对应边相等的结论.详解:已知:四边形ABCD是矩形,AC与BD是对角线,求证:,证明:四边形ABCD是矩形,,,又,≌,,所以矩形的对角线相等点睛:本题考查的是矩形的性质和全等三角形的判定.(1)在矩形中,对边平行相等,四个角都是直角;(2)全等三角形的判定原理AAS;三个判定公理(ASA、SAS、SSS);(3)全等三角形的对应边、对应角都相等.17、(1)y=2x+30(2)购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元【解析】
(1)根据总费用=甲种型号机器人的费用+乙种机器人的费用,求出y与x的关系式即可;(2)根据这10台机器人每小时分拣快递件数总和不少于8500件,列出不等式,求得x的取值范围,再利用(1)中函数,求出y的最小值即可.【详解】解:(1)y与x之间的函数关系式为:y=5x+3(10﹣x)=2x+30;(2)由题可得:1000x+800(10﹣x)≥8500,解得,∵2>0,∴y随x的增大而增大,∴当x=3时,y取得最小值,∴y最小=2×3+30=36,∴购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元.本题主要考查了一次函数的应用,解决此题的关键是熟练掌握函数的性质.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.18、(1)100;(2)目的地C在营地A的北偏东30°的方向上【解析】
(1)根据所走的方向判断出△ABC是直角三角形,根据勾股定理可求出解.(2)求出的度数,即可求出方向.【详解】(1)如图,过点B作BE//AD.∠DAB=∠ABE=60°∵30°+∠CBA+∠ABE=180°∠CBA=90°AC==100(m).(2)在Rt△ABC中,∵BC=50m,AC=100m,CAB=30°.
∵∠DAB=60°,DAC=30°,即目的地C在营地A的北偏东30°的方向上本题考查勾股定理的应用,先确定直角三角形,根据各边长用勾股定理可求出AC的长,且求出的度数,进而可求出点C在A点的什么方向上.一、填空题(本大题共5个小题,每小题4分,共20分)19、4.1.【解析】
根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA是x尺,根据题意可得:x1+41=(10﹣x)1,解得:x=4.1,答:折断处离地面的高度OA是4.1尺.故答案为:4.1.本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.20、30【解析】
解:先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=3021、2;x<﹣2或0<x<2.【解析】
(2)将A点坐标分别代入两个解析式,可求k;(2)由两个解析式组成方程组,求出交点,通过图象可得解.【详解】(2)∵函数y2的图象与直线y2=x+2交于点A(2,a),∴a=2+2=2,∴A(2,2),∴2,∴k=2,故答案为:2;(2)∵函数y2的图象与直线y2=x+2相交,∴x+2,∴x2=2,x2=﹣2,∵y2>y2,∴x<﹣2或0<x<2,故答案为:x<﹣2或0<x<2.本题考查了反比例函数与一次函数的交点问题,待定系数法,关键是熟练利用图象表达意义解决问题.22、1.【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=1.故答案为1.本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.23、≤;【解析】
因为二次根式满足的条件是:含二次根号,被开方数大于或等于0,利用二次根式满足的条件进行求解.【详解】因为是二次根式,所以,所以,故答案为.本题主要考查二次根式的定义,解决本题的关键是要熟练掌握二次根式的定义.二、解答题(本大题共3个小题,共30分)24、解:(1)(2)【解析】
(1)把左边配成完全平方式,右边化为常数;
(2)因方程公因式很明显故用因式分解法求解.【详解】(1)把方程的常数项移得,x2−4x=−1,方程两边同时加上一次项系数一半的平方得,x2−4x+4=−1+4,配方得,(x−2)2=3,解得:x1=2+,x2=2−(2)先提取公因式5x+4得,(5x+4)(x−1)=0,解得x1=1,x2=−25、(1)25;(2)能,t=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东警官学院《生物质能转化原理与技术》2023-2024学年第一学期期末试卷
- 广东江门中医药职业学院《实验安全与现场急救》2023-2024学年第一学期期末试卷
- 广东工商职业技术大学《广告设计与策划》2023-2024学年第一学期期末试卷
- 广东财贸职业学院《英语综合技能2》2023-2024学年第一学期期末试卷
- 《危害申报管理》课件
- 感恩企业培训课件
- 《化学动力学的任务》课件
- 共青科技职业学院《工业机器人应用》2023-2024学年第一学期期末试卷
- 赣州职业技术学院《中国通史现代》2023-2024学年第一学期期末试卷
- 皮带系统安全培训课件
- 2024年加油站的年度工作总结范文(2篇)
- 甲醇制氢生产装置计算书
- T-JSREA 32-2024 电化学储能电站消防验收规范
- 福建省晋江市松熹中学2024-2025学年七年级上学期第二次月考语文试题
- 【MOOC】隧道工程-中南大学 中国大学慕课MOOC答案
- ISO27001信息安全管理体系培训资料
- 红色经典影片与近现代中国发展学习通超星期末考试答案章节答案2024年
- 剧作策划与管理智慧树知到期末考试答案2024年
- 铁路基础知识考试题库500题(单选、多选、判断)
- 110kV变压器保护整定实例
- 销售顾问初级认证笔试题
评论
0/150
提交评论