版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页四川省成都市青羊区石室教育集团2025届九年级数学第一学期开学质量跟踪监视试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1,y2的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.不能确定2、(4分)如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2 B.4 C.8 D.43、(4分)设直角三角形的两条直角边分别为a和b,斜边长为c,已知,,则()A.3 B.4 C.5 D.84、(4分)下列等式中,从左到右的变形是因式分解的是()A. B.C. D.5、(4分)如图,点A,B,C在一次函数的图象上,它们的横坐标依次为,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1 B.3 C. D.6、(4分)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美 B.中华游 C.爱我中华 D.美我中华7、(4分)已知实数,若,则下列结论错误的是()A. B. C. D.8、(4分)如图,在△ABC中,BC=5,AC=8,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长等于()A.18 B.15 C.13 D.12二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如果正数m的平方根为x+1和x-3,则m的值是_____10、(4分)分解因式:____.11、(4分)在一个不透明的口袋中,装有4个红球和1个白球,这些球除颜色之外其余都相同,那么摸出1个球是红球的概率为________.12、(4分)如图,等腰中,,,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于______.13、(4分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是________.三、解答题(本大题共5个小题,共48分)14、(12分)如图平行四边形ABCD中,对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形15、(8分)已知在边长为4的菱形ABCD中,∠EBF=∠A=60°,(1)如图①,当点E、F分别在线段AD、DC上,①判断△EBF的形状,并说明理由;②若四边形ABFD的面积为7,求DE的长;(2)如图②,当点E、F分别在线段AD、DC的延长线上,BE与DC交于点O,设△BOF的面积为S1,△EOD的面积为S2,则S1-S2的值是否为定值,如果是,请求出定值:如果不是,请说明理由.16、(8分)先化简再求值,其中.17、(10分)鞋子的“鞋码”和鞋长(cm)是一次函数关系,下表是几组“鞋码”与鞋长的对应数值:鞋长15182326鞋码20263642(1)设鞋长为,“鞋码”为,求与之间的函数关系式;(2)如果你需要的鞋长为24cm,那么应该买多大码的鞋?18、(10分)已知抛物线的顶点为(2,﹣1),且过(1,0)点.(1)求抛物线的解析式;(2)在坐标系中画出此抛物线;B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE的长为_____________.20、(4分)如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=5,则DF=_____.21、(4分)对于任意不相等的两个正实数a,b,定义运算如下:如,如,那么________.22、(4分)当时,二次根式的值是______.23、(4分)在平面直角坐标系中,一次函数(、为常数,)的图象如图所示,根据图象中的信息可求得关于的方程的解为____.二、解答题(本大题共3个小题,共30分)24、(8分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?25、(10分)如图,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).(1)求直线AB的解析式;(2)如图,以点A为直角顶点作∠CAD=90°,射线AC交x轴于点C,射线AD交y轴于点D.当∠CAD绕着点A旋转,且点C在x轴的负半轴上,点D在y轴的负半轴上时,OC﹣OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围.26、(12分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.(1)当t为何值时,四边形ABDE是矩形;(2)当t为何值时,DE=CO?(3)连接AD,记△ADE的面积为S,求S与t的函数关系式.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,根据一次函数k=-1<0可得:y随x的增大而减小判断出y1,y1的大小.【详解】∵P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,且-3<1,
∴y1>y1.
故选C.考查了一次函数的性质,解题关键是熟记一次函数的性质:k>0时,图象从左到右上升,y随x的增大而增大;k<0时,图象从左到右下降,y随x的增大而减小.2、A【解析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出OB的长.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,OA=OC,∵AC⊥BC,AB=10,∴,∴,∴;故选:A.本题考查了平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质和勾股定理是解题的关键.3、B【解析】
根据勾股定理,直接计算即可得解.【详解】根据勾股定理,得故答案为B.此题主要考查勾股定理的运用,熟练掌握,即可解题.4、D【解析】
根据因式分解的定义,逐一判断选项,即可得到答案.【详解】∵是整式的乘法,不是因式分解,∴A不符合题意,∵不是因式分解,∴B不符合题意,∵不是因式分解,∴C不符合题意,∵是因式分解,∴D符合题意.故选D.本题主要考查因式分解的定义,掌握因式分解的定义,是解题的关键.5、B【解析】
根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为×1×[m-(-2+m)]+×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.6、C【解析】
将原式进行因式分解即可求出答案.【详解】解:原式=(x2-y2)(a2-b2)=(x-y)(x+y)(a-b)(a+b)由条件可知,(x-y)(x+y)(a-b)(a+b)可表示为“爱我中华”故选C.本题考查因式分解的应用,涉及平方差公式,提取公因式法,并考查学生的阅读理解能力.7、C【解析】
根据不等式的性质,可得答案.【详解】解:A.两边都加6,不等号的方向不变,故A正确;B.两边都减2,不等号的方向不变,故B正确;C.两边都乘﹣2,不等号的方向改变,故C错误;D.两边都除以3,不等号的方向不变,故D正确.故选C.本题考查了不等式的性质,掌握不等式的性质是解题的关键.8、C【解析】
先根据线段垂直平分线的性质得出,故可得出的周长,由此即可得出结论.【详解】解:在中,,,是线段的垂直平分线,,的周长.故选:C.本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.二、填空题(本大题共5个小题,每小题4分,共20分)9、4【解析】
根据数m的平方根是x+1和x-3,可知x+1和x-3互为相反数,据此即可列方程求得x的值,然后根据平方根的定义求得m的值.【详解】由题可得(x+1)+(x-3)=0,解得x=1,则m=(x+1)2=22=4.所以m的值是4.本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10、(3x+1)2【解析】
原式利用完全平方公式分解即可.【详解】解:原式=(3x+1)2,故答案为:(3x+1)2此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.11、0.8【解析】
由一个不透明的口袋中,装有4个红球,1个白球,这些球除颜色外其余都相同,直接利用概率公式求解即可求得答案.【详解】解:∵一个不透明的口袋中,装有4个红球,1个白球,这些球除颜色外其余都相同,∴从口袋中随机摸一个球,则摸到红球的概率为:故答案为:0.8此题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.12、45°【解析】
由等腰△ABC中,AB=AC,∠A=30°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【详解】∵等腰△ABC中,AB=AC,∠A=30°,∴∠ABC=(180°-30°)÷2=75°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=30°,∴∠CBE=∠ABC-∠ABE=75°-30°=45°.此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.13、-1≤a≤【解析】
根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.【详解】解:反比例函数经过点A和点C.当反比例函数经过点A时,即=3,解得:a=±(负根舍去);当反比例函数经过点C时,即=3,解得:a=1±(负根舍去),则-1≤a≤.故答案为:-1≤a≤.本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.三、解答题(本大题共5个小题,共48分)14、见解析【解析】
要证明四边形BFDE是平行四边形,可以证四边形BFDE有两组对边分别相等,即证明BF=DE,EB=DF即可得到.【详解】证明:∵ABCD是平行四边形,∴AB=DC,AB∥DC,∴∠BAF=∠DCE,又∵对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF,所以在△ABF和△DCE中,,∴△ABF≌△CDE(SAS),∴BF=DE,同理可证:△ADF≌△CBE(SAS),∴DF=BE,∴四边形BFDE是平行四边形.本题主要考查平行四边形的判定(两组对边分别平行,两组对边分别相等,有一组对边平行且相等),掌握判定的方法是解题的关键,在解题过程中,需要灵活运用所学知识,掌握三角形全等的判定或者两直线平行的判定对证明这道题目有着至关重要的作用.15、(1)①△EBF是等边三角形,见解析;②DE=1;(2)S1-S2的值是定值,S1-S2=4.【解析】
(1)①△EBF是等边三角形.连接BD,证明△ABE≌△DBF(ASA)即可解决问题.②如图1中,作BH⊥AD于H.求出△ABE的面积,利用三角形的面积公式求出AE即可解决问题.(2)如图2中,结论:S1-S2的值是定值.想办法证明:S1-S2=S△BCD即可.【详解】解:(1)①△EBF是等边三角形.理由如下:如图1中,连接BD,∵四边形ABCD是菱形,∴AD=AB,∵∠ADB=60°,∴△ADB是等边三角形,△BDC是等边三角形,∴AB=BD,∠ABD=∠A=∠BDC=60°,∵∠ABD=∠EBF=60°,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF(ASA),∴BE=BF,∵∠EBF=60°,∴△EBF是等边三角形.②如图1中,作BH⊥AD于H.在Rt△ABH中,BH=2,∴S△ABD=•AD•BH=4,∵S四边形ABFD=7,∴S△BDF=S△ABE=3,∴=3,∴AE=3,∴DE=AD=AE=1.(2)如图2中,结论:S1-S2的值是定值.理由:∵△BDC,△EBF都是等边三角形,∴BD=BC,∠DBC=∠EBF=60°,BE=BF,∴∠DBE=∠CBF,∴△DBE≌△CBF(SAS),∴S△BDE=S△BCF,∴S1-S2=S△BDE+S△BOC-S△DOE=S△DOE+S△BOD+S△BOC-S△DOE=S△BCD=×42=4.故S1-S2的值是定值.本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.16、a-b,-1【解析】
根据分式的运算法则先算括号里的减法,然后做乘法即可。【详解】解:原式当时,原式本题考查了分式的混合运算,熟练掌握运算法则是解题的关键。17、(1)y=2x-10;(2)38【解析】
(1)利用待定系数法求函数关系式即可;(2)代入x=24,求出y即可.【详解】解:(1)设x、y之间的函数关系式为:y=kx+b,根据题意得:,解得:,∴y与x之间的函数关系式为:y=2x−10;(2)当x=24时,y=2x−10=48-10=38,答:应该买38码的鞋.此题主要考查了一次函数的应用以及待定系数法求一次函数解析式,熟练掌握待定系数法是解题的关键.18、(1)y=(x﹣2)2﹣1;(2)见解析【解析】
(1)设顶点式y=a(x-2)2-1,然后把(1,0)代入求出a即可;
(2)利用描点法画函数图象;【详解】(1)设抛物线解析式为y=a(x﹣2)2﹣1,把(1,0)代入得a•1﹣1=0,解得a=1,所以抛物线解析式为y=(x﹣2)2﹣1;(2)如图如下,抛物线的顶点坐标为(2,﹣1),抛物线与x轴的交点坐标为(1,0),(3,0),抛物线与y轴的交点坐标为(0,3).本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】分析:根据角平分线的性质求出∠DAC=10°,根据直角三角形的性质得出CD的长度,最后根据角平分线的性质得出DE的长度.详解:∵∠BAC=60°,AD平分∠BAC,∴∠DAC=10°,∵AD=6,∴CD=1,又∵DE⊥AB,∴DE=DC=1.点睛:本题主要考查的是直角三角形的性质以及角平分线的性质,属于基础题型.合理利用角平分线的性质是解题的关键.20、1【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.【详解】解:∵D、E分别为AB、AC的中点,∴DE=12BC=2.5∵AF⊥CF,E为AC的中点,∴EF=12AC=1.5∴DF=DE﹣EF=1,故答案为:1.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.21、【解析】
根据题目所给定义求解即可.【详解】解:因为,所以.本题考查了二次根式的运算,属于新定义题型,正确理解题中所给定义并进行应用是解题的关键.22、【解析】
把x=-2代入根式即可求解.【详解】把x=-2代入得此题主要考查二次根式,解题的关键是熟知二次根式的性质.23、x=-2【解析】
首先根据图像中的信息,可得该一次函数图像经过点(-2,3)和点(0,1),代入即可求得函数解析式,方程即可得解.【详解】解:由已知条件,可得图像经过点(-2,3)和点(0,1),代入,得解得即方程为解得此题主要考查利用一次函数图像的信息求解析式,然后求解一元一次方程,熟练运用,即可解题.二、解答题(本大题共3个小题,共30分)24、(1)100+200x;(2)1.【解析】试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论;(2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.试题解析:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x斤;(2)根据题意得:,解得:x=或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.答:张阿姨需将每斤的售价降低1元.考点:1.一元二次方程的应用;2.销售问题;3.综合题.25、(1);(2)不变,值为2.【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东东软学院《抗震与高层建筑结构设计》2023-2024学年第一学期期末试卷
- 广东创新科技职业学院《化工过程开发与设计》2023-2024学年第一学期期末试卷
- 《老字的其他用法》课件
- 《自发性气胸的诊治》课件
- 《线性代数课本》课件
- 广东财经大学《工程热力学(二)》2023-2024学年第一学期期末试卷
- 《设计未来的组织》课件
- 小学生游戏课件
- 《物流市场营销环境》课件
- 《投资基金介绍》课件
- 北京市人工智能产业发展建议
- 【部编】小高考:2021年江苏普通高中学业水平测试历史试卷
- 公路隧道建设施工技术规范学习考试题库(400道)
- 新人教版七至九年级英语单词表 汉译英(含音标)
- 浅谈事业单位固定资产的折旧本科学位论文
- 食堂管理制度大全
- 爱普生机器人中级培训资料
- 2023-2024学年浙江省富阳市小学数学六年级上册期末模考试卷
- 2020-2021学年江苏省徐州市九年级(上)期末化学试卷
- 2022浙江卷高考真题读后续写+课件 【知识精讲+高效课堂】高三英语写作专项
- 社工入户探访操作手册
评论
0/150
提交评论