版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省合肥八中高一上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义运算,则函数的部分图象大致是()A. B.C. D.2.若函数f(x)=|x|+x3,则f(lg2)++f(lg5)+=()A.2 B.4C.6 D.83.下列函数中,以为最小正周期,且在上单调递增的是()A. B.C. D.4.命题“,”否定是()A., B.,C., D.,5.设,则a,b,c的大小关系是A. B.C. D.6.函数的图象与函数的图象关于直线对称,则函数的单调递减区间为A. B.C. D.7.若函数f(x)=sin(2x+φ)为R上的偶函数,则φ的值可以是()A. B.C. D.8.集合,则A∩B=()A.[0,2] B.(1,2]C.[1,2] D.(1,+∞)9.若,且为第二象限角,则()A. B.C. D.10.已知函数,且,则A.3 B.C.9 D.二、填空题:本大题共6小题,每小题5分,共30分。11.过点,的直线的倾斜角为___________.12.已知函数的图象(且)恒过定点P,则点P的坐标是______,函数的单调递增区间是__________.13.已知函数,若方程有4个不同的实数根,则的取值范围是____14.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为______15.已知向量的夹角为,,则__________.16.已知为第二象限角,且,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.集合A={x|},B={x|};(1)用区间表示集合A;(2)若a>0,b为(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范围.18.已知二次函数fx(1)当对称轴为x=-1时,(i)求实数a的值;(ii)求f(x)在区间-2,2上的值域.(2)解不等式fx19.已知,.若,求的取值范围.20.已知.(1)若在第二象限,求的值;(2)已知,且,求值.21.已知函数f(x)是偶函数,且x≤0时,f(x)=-(其中e为自然对数的底数)(Ⅰ)比较f(2)与f(-3)大小;(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据运算得到函数解析式作图判断.【详解】,其图象如图所示:故选:B2、A【解析】利用f(x)解析式的特征和对数的计算法则运算即可﹒【详解】由于f(x)=|x|+x3,得f(-x)+f(x)=2|x|,又lg=-lg2,lg=-lg5∴原式=2|lg2|+2|lg5|=2(lg2+lg5)=2故选:A﹒3、D【解析】根据最小正周期判断AC,根据单调性排除B,进而得答案.【详解】解:对于AC选项,,的最小正周期为,故错误;对于B选项,最小正周期为,在区间上单调递减,故错误;对于D选项,最小正周期为,当时,为单调递增函数,故正确.故选:D4、B【解析】根据命题的否定的定义判断.【详解】命题“,”的否定是:,故选:B5、D【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【详解】,因此可得.故选:D【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.6、D【解析】先由函数是函数的反函数,所以,再求得,再求函数的定义域,再结合复合函数的单调性求解即可.【详解】解:由题意函数的图象与函数的图象关于直线对称知,函数是函数的反函数,所以,即,要使函数有意义,则,即,解得,设,则函数在上单调递增,在上单调递减.因为函数在定义域上为增函数,所以由复合函数的单调性性质可知,则此函数的单调递减区间是,故选D【点睛】本题考查了函数的反函数的求法及复合函数的单调性,重点考查了函数的定义域,属中档题.7、C【解析】根据三角函数的奇偶性,即可得出φ的值【详解】函数f(x)=sin(2x+φ)为R上的偶函数,则φ=+kπ,k∈Z;所以φ的值可以是.故选C.【点睛】本题考查了三角函数的图象与性质的应用问题,属于基础题8、B【解析】先求出集合A,B,再求两集合的交集即可【详解】解:由,得,所以,由于,所以,所以,所以,故选:B9、A【解析】由已知利用诱导公式求得,进一步求得,再利用三角函数的基本关系式,即可求解【详解】由题意,得,又由为第二象限角,所以,所以故选:A.10、C【解析】利用函数的奇偶性以及已知条件转化求解即可【详解】函数g(x)=ax3+btanx是奇函数,且,因为函数f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,则=﹣g()+6=3+6=9故选C【点睛】本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.已知函数解析式求函数值,可以直接将变量直接代入解析式从而得到函数值,直接代入较为繁琐的题目,可以考虑函数的奇偶性的应用,利用部分具有奇偶性的特点进行求解,就如这个题目.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】设直线的倾斜角为,求出直线的斜率即得解.【详解】解:设直线的倾斜角为,由题得直线的斜率为,因为,所以.故答案为:12、①.②.【解析】令,求得,即可得到函数的图象恒过定点;令,求得函数的定义域为,利用二次函数的性质,结合复合函数的单调性的判定方法,即可求解.【详解】由题意,函数(且),令,即,可得,即函数的图象恒过定点,令,即,解得,即函数的定义域为,又由函数的图象开口向下,对称轴的方程为,所以函数在上单调递增,在上单调递减,结合复合函数的单调性的判定方法,可得函数的递增区间为.故答案为:;.13、【解析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解.【详解】由题意,函数,要先画出函数的图象,如图所示,又由方程有4个不同的实数根,即函数的图象与有四个不同的交点,可得,且,则=,因为,则,所以.故答案为.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把方程有4个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.14、【解析】在圆C2上任取一点(x,y),则此点关于直线对称点(y+1,x-1)在圆C1:上,所以有(y+1+1)2+(x-1-1)2=1,即,所以答案为考点:点关于直线的对称点的求法点评:本题考查一曲线关于一直线对称的曲线方程的求法:在圆C2上任取一点(x,y),则此点关于直线的对称点(y+1,x-1)在圆C1上15、【解析】由已知得,所以,所以答案:点睛:向量数量积的求法及注意事项:(1)计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用(2)求向量模的常用方法:利用公式,将模的运算转化为向量的数量积的运算,解题时要注意向量数量积运算率的灵活应用(3)利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧16、【解析】根据同角三角函数关系结合诱导公式计算得到答案.【详解】为第二象限角,且,故,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,将b代入并因式分解,即可得解;(3)由题意知A⊆B,对a分类讨论即求得范围【详解】解:(1)由,有,解得x≤﹣2或x>3∴A=(-∞,-2]∪(3,+∞)(2)t>2,当且仅当t=5时取等号,故即为:且a>0∴,解得故B={x|}(3)b<0,A∩B=A,有A⊆B,而可得:a=0时,化为:2x﹣b<0,解得但不满足A⊆B,舍去a>0时,解得:或但不满足A⊆B,舍去a<0时,解得或∵A⊆B∴,解得∴a、b的取值范围是a∈,b∈(-4,0).【点评】本题考查了集合运算性质、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.18、(1)(i)-13;(ii)(2)答案见解析.【解析】(1)(i)解方程(a+1)2a=-1即得解;((2)对a分类讨论解不等式.【小问1详解】解:(i)由题得--(a+1)(ii)fx=-1所以当x∈-2,2时,ff(x)所以f(x)在区间-2,2上的值域为[-5【小问2详解】解:ax当a=0时,-x+1≥0,∴x≤1;当a>0时,(ax-1)(x-1)≥0,∴x当0<a<1时,不等式解集为{x|x≥1a或x≤1}当a=1时,不等式的解集为R;当a>1时,不等式的解集为{x|x≥1或x≤1当a<0时,(ax-1)(-x+1)≤0,∴x所以不等式的解集为{x|1综上,当a=0时,不等式的解集为{x|x≤1}当0<a<1时,不等式的解集为{x|x≥1a或当a=1时,不等式的解集为R;当a>1时,不等式的解集为{x|x≥1或x≤1当a<0时,不等式的解集为{x|119、.【解析】利用对函数数的性质化简,利用一元二次不等式的解法,讨论,,三种情况,分别分析集合,再结合,解得的取值范围【详解】由,得,解得,即,由,得,当时,是空集,不满足,不符合题意,舍去;当时,,不满足,不符合题意,舍去;当时,解得,因为,所以的取值范围是.20、(1)(2)【解析】(1)根据题意,结合半角公式得,故,,再根据二倍角公式计算即可.(2)由题知,再结合正切的和角公式求解即可.【小问1详解】解:,∴∵在第二象限,∴,,∴【小问2详解】解:∴,21、(I);(II).【解析】(Ⅰ)由偶函数在时递减,时递增,即可判断(2)和的大小关系;(Ⅱ)由题意可得在时有且只有一个实根,可得在时有且只有一个实根,可令,则,求得导数判断单调性,计算可得所求范围【详解】解:(Ⅰ)函数f(x)是偶函数,且x≤0时,f(x)=-,可得f(x)在x<0时递减,x>0时递增,由f(-3)=f(3),可得f(2)<f(3),即有f(2)<f(-3);(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,即为2(1-3a)ex+2a+=-在x>0时有且只有一个实根,可得3a=在x>0时有且只有一个实根,可令t=ex(t>1),则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孕妇学校课外活动
- 《通山隆鼎丽都》课件
- 2024年四川省宜宾市中考化学真题【附答案】
- 兴奋状态的护理
- 《公众聚集场所消防》课件
- 《听听那冷雨大学语》课件
- 包皮手术科普
- 清平乐村居获奖课件
- 小儿尖足推拿治疗
- 大咯血应急预案的护理
- 2024年度Logo设计及品牌形象重塑合同
- 中小学学校国家智慧教育云平台应用项目实施方案
- 2024-2025学年广东省佛山市S6高质量发展联盟高二上学期期中联考数学试卷(含答案)
- 2024-2030年铝型材行业市场深度调研及前景趋势与投资战略研究报告
- 2024-2030年辣椒种植行业市场深度分析及发展策略研究报告
- 通信工程施工方案
- 初中英语研修方案
- 化工厂拆除施工方案
- 海南自贸港优化营商环境条例7大亮点解读课件
- 中国邮政储蓄银行2024年下半年社会招聘高频难、易错点500题模拟试题附带答案详解
- 《中华人民共和国道路交通安全法实施条例》知识专题培训
评论
0/150
提交评论