北京市重点中学2025届高一数学第一学期期末监测模拟试题含解析_第1页
北京市重点中学2025届高一数学第一学期期末监测模拟试题含解析_第2页
北京市重点中学2025届高一数学第一学期期末监测模拟试题含解析_第3页
北京市重点中学2025届高一数学第一学期期末监测模拟试题含解析_第4页
北京市重点中学2025届高一数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市重点中学2025届高一数学第一学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则的大致图像为()A. B.C. D.2.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或3.函数,x∈R在()A.上是增函数B.上是减函数C.上是减函数D.上是减函数4.已知,则()A. B.C. D.35.如果是定义在上的函数,使得对任意的,均有,则称该函数是“-函数”.若函数是“-函数”,则实数的取值范围是()A. B.C. D.6.甲:“x是第一象限的角”,乙:“是增函数”,则甲是乙的()A充分但不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件7.已知角的终边经过点,且,则的值为()A. B.C. D.8.某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是A.13 B.23C.33 D.439.方程的解所在的区间是()A. B.C. D.10.已知命题:角为第二或第三象限角,命题:,命题是命题的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.如图1,正方形ABCD的边长为2,点M为线段CD的中点.现把正方形纸按照图2进行折叠,使点A与点M重合,折痕与AD交于点E,与BC交于点F.记,则_______.12.若函数是奇函数,则__________.13.函数的零点个数为___14.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从__________年开始,快递业产生的包装垃圾超过4000万吨.(参考数据:,)15.已知样本9,10,11,,的平均数是10,标准差是,则______,______.16.空间两点与的距离是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)证明:平面平面.18.已知函数,(1)证明在上是增函数;(2)求在上的最大值及最小值.19.某运营商为满足用户手机上网的需求,推出甲、乙两种流量包月套餐,两种套餐应付的费用(单位:元)和使用的上网流量(单位:GB)之间的关系如图所示,其中AB,DE都与横轴平行,BC与EF相互平行(1)分别求套餐甲、乙的费用(元)与上网流量x(GB)的函数关系式f(x)和g(x);(2)根据题中信息,用户怎样选择流量包月套餐,能使自己应付的费用更少?20.已知关于x的不等式对恒成立.(1)求的取值范围;(2)当取得最小值时,求的值.21.已知集合,.(1)若,求;(2)若,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】计算的值即可判断得解.【详解】解:由题得,所以排除选项A,D.,所以排除选项C.故选:B2、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.3、B【解析】化简,根据余弦函数知识确定正确选项.【详解】,所以在上递增,在上递减.B正确,ACD选项错误.故选:B4、A【解析】结合两角和的正切公式、诱导公式求得正确答案.【详解】.故选:A5、A【解析】根据题中的新定义转化为,即,根据的值域求的取值范围.【详解】,,函数是“-函数”,对任意,均有,即,,即,又,或.故选:A【点睛】关键点点睛:本题考查函数新定义,关键是读懂新定义,并使用新定义,并能转化为函数值域解决问题.6、D【解析】由正弦函数的单调性结合充分必要条件的定义判定得解【详解】由x是第一象限的角,不能得到是增函数;反之,由是增函数,x也不一定是第一象限角故甲是乙的既不充分又不必要条件故选D【点睛】本题考查充分必要条件的判定,考查正弦函数的单调性,是基础题7、B【解析】根据点,先表示出该点和原点之间的距离,再根据三角函数的定义列出等式,解方程可得答案.【详解】因为角的终边经过点,则,因为,所以,且,解得,故选:B8、C【解析】根据系统抽样的定义,求出抽取间隔,即可得到结论.【详解】由题意,名抽取名学生,则抽取间隔为,则抽取编号为,则第四组抽取的学生编号为.故选:【点睛】本题考查系统抽样,等间距抽取,属于简单题.9、B【解析】作差构造函数,利用零点存在定理进行求解.【详解】令,则,,因为,所以函数的零点所在的区间是,即方程的解所在的区间是.故选:B.10、D【解析】利用切化弦判断充分性,根据第四象限的角判断必要性.【详解】当角为第二象限角时,,所以,当角为第三象限角时,,所以,所以命题是命题的不充分条件.当时,显然,当角可以为第四象限角,命题是命题的不必要条件.所以命题是命题的既不充分也不必要条件.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设,则,利用勾股定理求得,进而得出,根据正弦函数的定义求出,由诱导公式求出,结合同角的三角函数关系和两角和的正弦公式计算即可.【详解】设,则,在中,,所以,即,解得,所以,所以在中,,则,又,所以.故答案为:12、【解析】根据题意,得到,即可求解.【详解】因为是奇函数,可得.故答案为:.13、2【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可.【详解】当x≤0时,,∵,故此时零点为;当x>0时,在上单调递增,当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点;综上,函数y在R上共有2个零点.故答案为:2.14、2021【解析】设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×(两边取对数可得n(lg3-lg2)=1,∴n(0.4771-0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为202115、①.20②.96【解析】先由平均数的公式列出x+y=20,然后根据方差的公式列方程,求出x和y的值即可求出xy的值.【详解】根据平均数及方差公式,可得:化简得:,,或则,故答案为:20;96【点睛】本题主要考查了平均数和方等概念,以及解方程组,属于容易题.16、【解析】根据两点间的距离求得正确答案.【详解】.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】(1)连结,交点,连,推出//1,即可证明平面;(2)取的中点,连结,证明四边形是平行四边形,证明,得到平面,然后证明平面平面试题解析:(1)连结,交点,连,则是的中点,因为是的中点,故//.因为平面,平面.所以//平面.(2)取的中点,连结,因为是的中点,故//且.显然//,且,所以//且则四边形是平行四边形.所以//.因为,所以又,所以直线平面.因为//,所以直线平面.因为平面,所以平面平面18、(1)证明见解析;(2)当时,有最小值2;当时,有最大值.【解析】(1)根据单调性的定义,直接证明,即可得出结论;(2)根据(1)的结果,确定函数在给定区间的单调性,即可得出结果.【详解】(1)证明:在上任取,,且,,,,,,,即,故在上是增函数;(2)解:由(1)知:在上是增函数,当时,有最小值2;当时,有最大值.【点睛】本题主要考查证明函数单调性,以及由函数单调性求最值,属于常考题型.19、(1)f(x)=30, (2)答案见解析【解析】(1)利用函数的图像结合分段函数的性质求出解析式;(2)由f(x)=g(x),得x=30,结合图像选择合适的套餐.【小问1详解】对于套餐甲:当0≤x≤20时,f(x)=30,当x>20时,设f(x)=kx+b,可知函数图象经过点(20,30),所以20k+b=3050k+b=120,解得k=3b=-30故f(x)=对于套餐乙:当0≤x≤50时,g(x)=60,当x>50时,根据题意,可设g(x)=3x+d,将(50,60)代入可得d=-90故g(x)=【小问2详解】由f(x)=g(x),可得3x-30=60,解得x=30由函数图象可知:若用户使用的流量x∈[0,30若用户使用的流量x=30时,选择两种套餐均可;若用户使用的流量x∈(30,+∞20、(1)(2)【解析】(1)根据已知条件,利用判别式小于等于零列不等式可得范围;(2)根据(1)可得,利用转化分母,把

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论