




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西北海市普通高中2025届数学高二上期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种 B.81种C.64种 D.256种2.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则3.已知,,,则,,的大小关系是A. B.C. D.4.若,,则下列各式中正确的是()A. B.C. D.5.在各项均为正数等比数列中,若成等差数列,则=()A. B.C. D.6.已知圆:的面积被直线平分,圆:,则圆与圆的位置关系是()A.相离 B.相交C.内切 D.外切7.已知两条异面直线的方向向量分别是,,则这两条异面直线所成的角满足()A. B.C. D.8.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.119.函数的单调递减区间为()A. B.C. D.10.若“”是“”的充分不必要条件,则实数a的取值范围为A. B.或C. D.11.已知,则点到平面的距离为()A. B.C. D.12.在中,内角所对的边为,若,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在处有极值2,则______.14.与同一条直线都相交的两条直线的位置关系是________15.已知函数的导函数为,且对任意,,若,,则的取值范围是___________.16.已知是双曲线的左、右焦点,点M是双曲线E上的任意一点(不是顶点),过作角平分线的垂线,垂足为N,O是坐标原点.若,则双曲线E的渐近线方程为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,椭圆过点.(1)求椭圆C的方程;(2)过点的直线交椭圆于M、N两点,已知直线MA,NA分别交直线于点P,Q,求的值.18.(12分)浙江省新高考采用“3+3”模式,其中语文、数学、外语三科为必考科目,另外考生根据自己实际需要在政治、历史、地理、物理、化学、生物、技术7门科目中自选3门参加考试.下面是某校高一200名学生在一次检测中的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如下图所示(1)求频率分布直方图中的值;(2)由频率分布直方图,求物理、化学、生物三科总分成绩的第60百分位数;(3)若小明决定从“物理、化学、生物、政治、技术”五门学科中选择三门作为自己的选考科目,求小明选中“技术”的概率19.(12分)曲线的左、右焦点分别为,左、右顶点分别为,C上的点M满足,且直线的斜率之积等于(1)求C的方程;(2)过点的直线l交C于A,B两点,若,其中,证明:20.(12分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)21.(12分)芯片作为在集成电路上的载体,广泛应用在手机、军工、航天等多个领域,是能够影响一个国家现代工业的重要因素.根据市场调研与统计,某公司七年时间里在芯片技术上的研发投入x(亿元)与收益y(亿元)的数据统计如下:(1)根据折线图数据,求y关于x的线性回归方程(系数精确到整数部分);(2)为鼓励科技创新,当研发技术投入不少于16亿元时,国家给予公司补贴5亿元,预测当芯片的研发投入为17亿元时公司的实际收益附:其回归方程的斜率和截距的最小二乘法估计分别为,.参考数据,22.(10分)在二项式展开式中,第3项和第4项的二项式系数比为.(1)求n的值及展开式中的常数项;(2)求展开式中系数最大的项是第几项.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用分步乘法计数原理进行计算.【详解】每位同学均有四种选择,故不同的报名方法有种.故选:D2、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C3、B【解析】若对数式的底相同,直接利用对数函数的性质判断即可,若底不同,则根据结构构造函数,利用函数的单调性判断大小【详解】对于的大小:,,明显;对于的大小:构造函数,则,当时,在上单调递增,当时,在上单调递减,即对于的大小:,,,故选B【点睛】将两两变成结构相同的对数形式,然后利用对数函数的性质判断,对于结构类似的,可以通过构造函数来来比较大小,此题是一道中等难度的题目4、D【解析】根据题意,结合,,利用不等式的性质可判断,从而判断,再利用不等式性质得出正确答案.【详解】,,,又,,两边同乘以负数,可知故选:D5、A【解析】利用等差中项的定义以及等比数列的通项公式即可求解.【详解】设等比数列的公比为,∵成等差数列,∴,即,解得或(舍去),∴,故选:.6、D【解析】根据题意,圆:的面积被直线平分,即直线经过圆的圆心,由此求出两圆的圆心和半径,然后判断两个圆的位置关系即可【详解】根据题意,圆:,即,其圆心为,半径,圆:的面积被直线平分,即直线经过圆的圆心,则有1−m+1=0,解可得m=2,即所以圆的圆心(1,−1),半径为1,圆的标准方程是,圆心(−2,3),半径为4,其圆心距,所以两个圆外切,故选:D.7、D【解析】利用向量夹角余弦公式直接求解【详解】解:两条异面直线的方向向量分别是,,这两条异面直线所成的角满足:,,故选:D8、B【解析】利用平均变化率的公式即得.【详解】∵,∴.故选:B.9、A【解析】先求定义域,再由导数小于零即可求得函数的单调递减区间.【详解】由得,所以函数的定义域为,又,因为,所以由得,解得,所以函数的单调递减区间为.故选:A.10、D【解析】“”是“”的充分不必要条件,结合集合的包含关系,即可求出的取值范围.【详解】∵“”是“”的充分不必要条件∴或∴故选:D.【点睛】本题考查充分必要条件,根据充要条件求解参数的范围时,可把充分条件、必要条件或充要条件转化为集合间的关系,由此得到不等式(组)后再求范围.解题时要注意,在利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.11、A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A12、B【解析】利用正弦定理角化边得到,再利用余弦定理构造方程求得结果.【详解】,,由余弦定理得:,,.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】根据函数在处有极值2,可得,解方程组即可得解.【详解】解:,因为函数在处有极值2,所以,即,解得,则,故当时,,当时,,所以函数在处有极大值,所以,所以.故答案为:6.14、平行,相交或者异面【解析】由空间中两直线的位置关系求解即可【详解】由题意与同一条直线都相交的两条直线的位置关系可能是:平行,相交或者异面,故答案为:平行,相交或者异面,15、【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性可得解.【详解】构造函数,则,故函数在上单调递减,由已知可得,由可得,可得.故答案为:.16、【解析】延长交于点,利用角平分线结合中位线和双曲线定义求得的关系,然后利用,及渐近线方程即可求得结果.【详解】延长交于点,∵是的平分线,,,又是中点,所以,且,又,,,又,双曲线E的渐近线方程为故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】(1)由题意得到关于a,b的方程组,求解方程组即可确定椭圆方程;(2)首先联立直线与椭圆的方程,然后由直线MA,NA的方程确定点P,Q的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得,从而可得两线段长度的比值.【小问1详解】由题意,点椭圆上,有,解得故椭圆C的方程为.【小问2详解】当直线l的斜率不存在时,显然不符;当直线l的斜率存在时,设直线l为:联立方程得:由,设,有又由直线AM:,令x=-4得,将代入得:,同理得:.很明显,且,注意到,,而,故所以.【点睛】本题考查求椭圆的方程,解题关键是利用离心率与椭圆上的点,找到关于a,b,c的等量关系求解a与b.本题中直线方程代入椭圆方程整理后应用韦达定理求出,.表示出,,然后转化为相应的比值关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题18、(1)=0.005(2)232(3)【解析】(1)由频率和为1列方程求解即可,(2)由于前3组的频率和小于0.6,前4组的频率和大于0.6,所以三科总分成绩的第60百分位数在第4组内,设第60百分位数为,则0.45+0.0125×(−220)=0.6,从而可求得结果,(3)利用列举法求解即可【小问1详解】由(0.002+0.0095+0.011+0.0125+0.0075++0.0025)×20=1,解得=0.005【小问2详解】因为(0.002+0.0095+0.011)×20=0.45<0.6,(0.002+0.0095+0.011+0.0125)×20=0.7>0.6,所以三科总分成绩的第60百分位数在[220,240)内,设第60百分位数为,则0.45+0.0125×(−220)=0.6,解得=232,即第60百分位数为232【小问3详解】将物理、化学、生物、政治、技术5门学科分别记作.则事件A表示小明选中“技术”,则,所以P(A)=19、(1)(2)证明见解析【解析】(1)由椭圆定义可得到,再利用斜率公式及直线的斜率之积等于,列出方程,化简对比系数可得;(2)分直线l的斜率为0和不为0两种情况讨论,利用可得到T在定直线上,且该直线是的中垂线即可得到证明.【小问1详解】因为C上的点M满足,所以C表示焦点在x轴上的椭圆,且,即,,所以,设,则,①所以直线的斜率,直线的斜率,由已知得,即,②由①②得,所以C的方程为【小问2详解】当直线l的斜率为0时,A与重合,B与重合,,,成立.当直线l的斜率不为0时,设l的方程为联立方程组,消x整理得所以,解得或设,则,由,得,所以设,由,得,所以,所以,所以点T在直线上,且,所以是等腰三角形,且,所以,综上,【点睛】关键点点晴:本题第二问突破点是证明T在定直线上,且该直线是的垂直平分线,从而得到,考查学生的数学运算能力,转化化归思想.20、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧长公式求出弧的长度,则可得函数;(2)利用导数可求得结果.【详解】(1)如图,连接在直角三角形中,所以由于则弧的长为(2)由(1)可知,令得,因为所以,当单调递增,当单调递减,所以当时,使得绿化带总长度最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.21、(1)(2)85亿元【解析】(1)利用公式和数据计算即可(2)代入回归直线计算即可小问1详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房产继承优先权放弃及共有权转让协议书
- 外企在华员工权益保护及管理服务协议
- 茶叶门店代理协议书
- 制沙场承包合同协议书
- 购车金融签约协议书
- 资产处置廉洁协议书
- 钻石黄金抵押协议书
- 钢琴学员转让协议书
- 食堂外包框架协议书
- 跃层室内搭建协议书
- 军队文职考试试题及答案
- 【公开课】巴西+课件-2024-2025学年七年级地理下学期人教版
- 10.3 保障财产权 课件-2024-2025学年统编版道德与法治七年级下册
- 2025-2030中国表面声波(SAW)滤波器行业市场发展趋势与前景展望战略研究报告
- 的电工考试试题及答案
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读课件
- 2024年首都机场集团招聘笔试参考题库附带答案详解
- 小学思政课《爱国主义教育》
- 工会行政性资产管理暂行办法
- 预制箱梁运输及安装质量保证体系及措施
- 航空煤油 MSDS 安全技术说明书
评论
0/150
提交评论