版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市三十五中2025届高一数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.若函数是偶函数,则的单调递增区间为()A. B.C. D.3.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.4.设P是△ABC所在平面内的一点,,则A. B.C. D.5.定义在上的函数满足下列三个条件:①;②对任意,都有;③的图像关于轴对称.则下列结论中正确的是AB.C.D.6.已知,则下列选项中正确的是()A. B.C. D.7.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.8.不等式的解集为,则函数的图像大致为()A. B.C. D.9.已知在正四面体ABCD中,E是AD的中点,P是棱AC上的一动点,BP+PE的最小值为,则该四面体内切球的体积为()A.π B.πC.4π D.π10.已知全集,集合,集合,则集合为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的最小值是___________,此时___________.12.已知函数的图象过原点,则___________13.当时,使成立的x的取值范围为______14.设向量不平行,向量与平行,则实数_________.15.已知函数的零点依次为a,b,c,则=________16.已知,若,则实数的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在非空集合①,②,③这三个条件中任选一个,补充在下面问题中,已知集合______,使“”是“”的充分不必要条件,若问题中a存在,求a的值;若a不存在,请说明理由.(如果选择多个条件分别解答,按第一个解答计分)18.已知函数,其中,再从条件①、条件②、条件③这三个条件中选择两个作为已知.条件①:;条件②:的最小正周期为;条件③:的图象经过点(1)求的解析式;(2)求的单调递增区间19.设两个向量,,满足,.(1)若,求、的夹角;(2)若、夹角为,向量与的夹角为钝角,求实数的取值范围.20.如图,在同一平面上,已知等腰直角三角形纸片的腰长为3,正方形纸片的边长为1,其中B、C、D三点在同一水平线上依次排列.把正方形纸片向左平移a个单位,.设两张纸片重叠部分的面积为S.(1)求关于a的函数解析式;(2)若,求a的值.21.已知,且,(1)求,的值;(2),求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先看时,是否成立,即判断充分性;再看成立时,能否推出,即判断必要性,由此可得答案.【详解】当时,,即“”是的充分条件;当时,,则或,则或,即成立,推不出一定成立,故“”不是的必要条件,故选:A.2、B【解析】利用函数是偶函数,可得,解出.再利用二次函数的单调性即可得出单调区间【详解】解:函数是偶函数,,,化为,对于任意实数恒成立,,解得;,利用二次函数的单调性,可得其单调递增区间为故选:B【点睛】本题考查函数的奇偶性和对称性的应用,熟练掌握函数的奇偶性和二次函数的单调性是解题的关键.3、A【解析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题4、B【解析】由向量的加减法运算化简即可得解.【详解】,移项得【点睛】本题主要考查了向量的加减法运算,属于基础题.5、D【解析】先由,得函数周期为6,得到f(7)=f(1);再利用y=f(x+3)的图象关于y轴对称得到y=f(x)的图象关于x=3轴对称,进而得到f(1)=f(5);最后利用条件(2)得出结论因为,所以;即函数周期为6,故;又因为的图象关于y轴对称,所以的图象关于x=3对称,所以;又对任意,都有;所以故选:D考点:函数的奇偶性和单调性;函数的周期性.6、A【解析】计算的取值范围,比较范围即可.【详解】∴,,.∴.故选:A.7、D【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D8、C【解析】根据不等式的解集求出参数,从而可得,根据该形式可得正确的选项【详解】因为不等式的解集为,故,故,故,令,解得或,故抛物线开口向下,与轴的交点的横坐标为,故选:C9、D【解析】首先设正四面体的棱长为,将侧面和沿边展开成平面图形,根据题意得到的最小值为,从而得到,根据等体积转化得到内切球半径,再计算其体积即可.【详解】设正四面体的棱长为,将侧面和沿边展开成平面图形,如图所示:则的最小值为,解得.如图所示:为正四面体的高,,正四面体高.所以正四面体的体积.设正四面体内切球的球心为,半径为,如图所示:则到正四面体四个面的距离相等,都等于,所以正四面体的体积,解得.所以内切球的体积.故选:D10、C【解析】,选C二、填空题:本大题共6小题,每小题5分,共30分。11、①.1②.0【解析】利用基本不等式求解.【详解】因为,所以,当且仅当,即时,等号成立,所以其最小值是1,此时0,故答案为:1,012、0【解析】由题意可知,函数经过坐标原点,只需将原点坐标带入函数解析式,即可完成求解.【详解】因为的图象过原点,所以,即故答案为:0.13、【解析】根据正切函数的图象,进行求解即可【详解】由正切函数的图象知,当时,若,则,即实数x的取值范围是,故答案为【点睛】本题主要考查正切函数的应用,利用正切函数的性质结合函数的单调性是解决本题的关键14、-2【解析】因为向量与平行,所以存在,使,所以,解得答案:15、【解析】根据对称性得出,再由得出答案.【详解】因为函数与的图象关于对称,函数的图象关于对称,所以,又,所以.故答案为:16、【解析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【点睛】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、答案见解析【解析】由题设可得A不为空集,,根据所选的条件,结合充分不必要关系判断A、B的包含关系,进而列不等式组求参数范围.【详解】由题意知,A不为空集,i.如果选①,因为“”是“”的充分不必要条件,所以A是B的真子集,则,解得,所以实数a的取值范围是;ii.如果选②,因为“”是“”的充分不必要条件,所以A是B的真子集,则,此时,所以不存在a使“”是“”的充分不必要条件;iii.如果选③,因为“”是“”的充分不必要条件所以A是B的真子集,则,解得,此时无解不存在a使“”是“”的充分不必要条件18、(1)条件选择见解析,;(2)单调递增区间为,.【解析】(1)利用三角恒等变换化简得出.选择①②:由可求得的值,由正弦型函数的周期公式可求得的值,可得出函数的解析式;选择②③:由正弦型函数的周期公式可求得的值,由可求得的值,可得出函数的解析式;选择①③:由可求得的值,由结合可求得的值,可得出函数的解析式;(2)解不等式,可得出函数单调递增区间.【小问1详解】解:.选择①②:因为,所以,又因为的最小正周期为,所以,所以;选择②③:因为的最小正周期为,所以,则,又因为,所以,所以;选择①③:因为,所以,所以又因为,所以,所以,又因为,所以,所以【小问2详解】解:依题意,令,,解得,,所以的单调递增区间为,.19、(1);(2)且.【解析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得夹角;(2)根据夹角为钝角则数量积为负数,求得的范围;再排除向量与不为反向向量对应参数的范围,则问题得解.【详解】(1)因为,所以,即,又,,所以,所以,又,所以向量、的夹角是.(2)因为向量与的夹角为钝角,所以,且向量与不反向共线,即,又、夹角为,所以,所以,解得,又向量与不反向共线,所以,解得,所以的取值范围是且.【点睛】本题考查利用数量积求向量夹角,以及由夹角范围求参数范围,属综合基础题.20、(1);(2)或.【解析】(1)讨论、、分别求对应的,进而写出函数解析式的分段形式.(2)根据(1)所得解析式,将代入求a值即可.【小问1详解】如下图,延长到上的,又,则,∴,当时,;当时,;当时,.综上,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公共设施窗帘清洗消毒服务合同范本3篇
- 2024版汽车检测台租赁合同
- 2024石材外墙干挂劳务服务合同标准版6篇
- 2025年度特色饮品店门面房租赁及新品研发合同3篇
- 2025年度圆形冷却塔能源管理服务合同4篇
- 2024版基础建设融资借款协议模板版
- 2025年度水电工程质保期服务合同4篇
- 2025年度学校图书馆窗帘升级改造合同4篇
- 2025年度生态修复工程承包树木合同协议书4篇
- 2024石材行业品牌推广与营销合同3篇
- 领导沟通的艺术
- 发生用药错误应急预案
- 南浔至临安公路(南浔至练市段)公路工程环境影响报告
- 绿色贷款培训课件
- 大学生预征对象登记表(样表)
- 主管部门审核意见三篇
- 初中数学校本教材(完整版)
- 父母教育方式对幼儿社会性发展影响的研究
- 新课标人教版数学三年级上册第八单元《分数的初步认识》教材解读
- (人教版2019)数学必修第一册 第三章 函数的概念与性质 复习课件
- 重庆市铜梁区2024届数学八上期末检测试题含解析
评论
0/150
提交评论