版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市迎泽区太原五中2025届高一数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象先向右平移个单位长度,再向下平移1个单位长度,所得图象对应的函数解析式是()A. B.C. D.2.若将函数图象向左平移个单位,则平移后的图象对称轴为()A. B.C. D.3.一个正三棱柱的三视图如图所示,则这个三棱柱的表面积为()A. B.C. D.4.若,,则的值为A. B.C. D.5.若函数在单调递增,则实数a的取值范围为()A. B.C. D.6.若函数在上单调递增,且,则实数的取值范围是()A. B.C. D.7.已知,,,那么a,b,c的大小关系为()A. B.C. D.8.在下列函数中,同时满足:①在上单调递增;②最小正周期为的是()A. B.C. D.9.下列区间包含函数零点的为()A. B.C. D.10.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最大值为___________.12.若m,n满足m2+5m-3=0,n2+5n-3=0,且m≠n,则的值为___________.13.函数的定义域为_____________14.已知函数图像关于对称,当时,恒成立,则满足的取值范围是_____________15.函数的反函数为___________16.命题“,”的否定是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,直三棱柱中,分别为的中点.(1)求证:平面;(2)已知,,,求三棱锥的体积.18.已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值19.已知函数,满足,其一个零点为(1)当时,解关于x的不等式;(2)设,若对于任意的实数,,都有,求M的最小值20.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)21.(1)已知,求;(2)已知,,,是第三象限角,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用三角函数的伸缩平移变换规律求解变换后的解析式,再根据二倍角公式化简.【详解】将函数的图象先向右平移个单位长度,得函数解析式为,再将函数向下平移1个单位长度,得函数解析式为.故选:A2、A【解析】由图象平移写出平移后的解析式,再由正弦函数的性质求对称轴方程.【详解】,令,,则且.故选:A.3、D【解析】由三视图可知,该正三棱柱的底面是边长为2cm的正三角形,高为2cm,根据面积公式计算可得结果.【详解】正三棱柱如图,有,,三棱柱的表面积为.故选:D【点睛】本题考查了根据三视图求表面积,考查了正三棱柱结构特征,属于基础题.4、A【解析】由两角差的正切公式展开计算可得【详解】解:,,则,故选A【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础5、D【解析】根据给定条件利用对数型复合函数单调性列式求解作答.【详解】函数中,令,函数在上单调递增,而函数在上单调递增,则函数在上单调递增,且,因此,,解得,所以实数a的取值范围为.故选:D6、C【解析】由单调性可直接得到,解不等式即可求得结果.【详解】上单调递增,,,解得:,实数的取值范围为.故选:C7、B【解析】根据指数函数单调性比较大小.【详解】因为在上是增函数,又,所以,所以,故选B.【点睛】本题考查利用指数函数单调性比较指数幂的大小,难度较易.对于指数函数(且):若,则是上增函数;若,则是上减函数.8、C【解析】根据题意,结合余弦、正切函数图像性质,一一判断即可.【详解】对于选项AD,结合正切函数图象可知,和的最小正周期都为,故AD错误;对于选项B,结合余弦函数图象可知,在上单调递减,故B错误;对于选项C,结合正切函数图象可知,在上单调递增,且最小正周期,故C正确.故选:C.9、C【解析】根据零点存在定理,分别判断选项区间的端点值的正负可得答案.【详解】,,,,,又为上单调递增连续函数故选:C.10、D【解析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据二次函数的性质,结合给定的区间求最大值即可.【详解】由,则开口向上且对称轴为,又,∴,,故函数最大值为.故答案为:.12、【解析】由题可知是方程的两个不同实根,根据韦达定理可求出.【详解】由题可知是方程的两个不同实根,则,.故答案为:.13、【解析】令解得答案即可.【详解】令.故答案为:.14、【解析】由函数图像关于对称,可得函数是偶函数,由当时,恒成立,可得函数在上为增函数,从而将转化为,进而可求出取值范围【详解】因为函数图像关于对称,所以函数是偶函数,所以可转化为因为当时,恒成立,所以函数在上为增函数,所以,解得,所以取值范围为,故答案为:15、【解析】先求出函数的值域有,再得出,从而求得反函数.【详解】由,可得由,则,所以故答案为:.16、“,”【解析】直接利用全称命题的否定是特称命题写出结果即可【详解】因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:“,”三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)2【解析】(1)证线面平行则需在面中找一线与已知线平行即可,也可通过证明面面平行得到线面平行(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高为,∴棱柱的体积为.由体积关系可得试题解析:(1)设是的中点,分别在中使用三角形的中位线定理得.又是平面内的相交直线,∴平面平面.又平面,∴平面.(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高为,∴棱柱的体积为.∴.18、(Ⅰ)(Ⅱ)【解析】(Ⅰ)根据条件由正弦定理得,又c=2a,所以,由余弦定理算出,进而算出;(Ⅱ)由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【点睛】本题主要考查了正余弦定理应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.19、(1)答案见解析(2)242【解析】(1)根据条件求出,再分类讨论解不等式即可;(2)将问题转化为,再通过换无求最值即可.【小问1详解】因为,则,得又其一个零点为,则,得,则函数的解析式为则,即当时,解得:当时,①时,解集为R②时,解得:或,③时,解得:或,综上,当时,不等式的解集为;当时,解集为R;当时,不等式的解集为或;当时,不等式的解集为或.【小问2详解】对于任意的,,都有,即令,则因,则,可得,则,即,即M的最小值为24220、(1)喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升;(2)喝1瓶啤酒后需6小时后才可以驾车.【解析】(1)由图可知,当函数取得最大值时,,此时,当,即时,函数取得最大值为.故喝1瓶啤酒后1.5小时血液中的酒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论