




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题06双曲线性质(易错必刷34题17种题型专项训练)题型大集合双曲线轨迹第一定义定义求最值焦点三角形焦点三角形面积焦点三角形内切圆双曲线“开口”求渐近线方程焦点弦定比分点第三定义焦点三角形双余弦定理焦点三角形角平分线型实轴圆型求离心率“渐渐线”型绝对值范围渐近线上点求离心率离心率范围与最值椭圆与双曲线共焦点题型大通关一.双曲线轨迹(共2小题)1.(23-24上海·期中)设圆和圆是两个定圆,动圆与这两个定圆都相切,则动圆的圆心的轨迹不可能是(
)A.
B.
C.
D.
2.(23-24高二上·广东东莞·期中)设、是两定点,,动点P满足,则动点P的轨迹是(
)A.双曲线 B.双曲线的一支 C.一条射线 D.轨迹不存在第一定义(共2小题)3.(22-23高二上·山西晋中·期中)已知双曲线的左焦点为,点是双曲线右支上的一点,点是圆上的一点,则的最小值为(
)A.5 B. C.7 D.84.(21-22高二上·四川成都·期中)若点在曲线上,点在曲线上,点在曲线上,则的最大值是(
)A. B. C. D.三.定义求最值(共2小题)5.(22-23高二上·福建福州·期中)已知,双曲线的左、右焦点分别为,,点是双曲线左支上一点,则的最小值为()A.5 B.7 C.9 D.116.(22-23高二·全国·期中)已知,分别为双曲线的左、右焦点,为双曲线内一点,点A在双曲线的右支上,则的最小值为(
)A. B. C. D.四.焦点三角形(共2小题)7.(2024·青海·期中)已知,分别是双曲线C:的左、右焦点,,点P在C的右支上,且的周长为,则(
)A. B. C. D.8.(23-24高二上·广东中山·期中)圆锥曲线光学性质(如图1所示):从椭圆的一个焦点发出的光线经椭圆形的反射面反射后将汇聚到另一个焦点处;从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.如图2,一个光学装置由有公共焦点,的椭圆与双曲线构成,一光线从左焦点发出,依次经过与的反射,又回到点路线长为;若将装置中的去掉,则该光线从点发出,经过两次反射后又回到点路线长为.若与的离心率之比为,则(
)A. B. C. D.五.焦点三角形面积(共2小题)9.(23-24高二上·陕西西安·期中)已知焦点为的双曲线C的离心率为,点P为C上一点,且满足,若的面积为,则双曲线C的实轴长为(
)A.2 B. C. D.10.(23-24高二上·吉林长春·期中)已知是双曲线的右焦点,是左支上一点,,当周长最小时,该三角形的面积为(
)A. B. C. D.六.焦点三角形内切圆(共2小题)11.(23-24高二上·湖南·期中)已知为双曲线右支上的一个动点(不经过顶点),,分别是双曲线的左、右焦点,的内切圆圆心为,过做,垂足为,下列结论错误的是(
)A.的横坐标为 B. C. D.12.(21-22高二上·四川成都·期中)已知分别为双曲线的左、右焦点,点在双曲线上,为的内心,点满足,若且,记的外接圆半径为,则的值为(
)A. B. C. D.1双曲线“开口”(共2小题)13.(22-23高二下·上海黄浦·期中)双曲线和的离心率分别为和,若满足,则下列说法正确是(
)A.的渐近线斜率的绝对值较大,的开口较开阔B.的渐近线斜率的绝对值较大,的开口较狭窄C.的渐近线斜率的绝对值较大,的开口较开阔D.的渐近线斜率的绝对值较大,的开口较狭窄14.(2023·上海嘉定·一模)已知四条双曲线,,,,,关于下列三个结论的正确选项为(
)①的开口最为开阔;②的开口比的更为开阔;③和的开口的开阔程度相同.A.只有一个正确 B.只有两个正确 C.均正确 D.均不正确八.求渐近线方程(共2小题)15.(23-24高二上·河南信阳·期中)如图,已知分别是双曲线的左、右焦点,过点的直线与双曲线C的左支交于点A,B,若则双曲线C的渐近线方程为(
)A. B.C. D.16.(23-24高二上·宁夏银川·期中)在平面直角坐标系中,双曲线的左、右焦点分别为,,点是左支上一点,且,,则C的渐近线方程为(
)A. B. C. D.九.焦点弦定比分点(共2小题)17.(23-24高二上·湖北·期中)已知双曲线C:的左、右焦点分别为,,过的直线与C的左支交于A,B两点,且,,则C的渐近线为(
)A. B. C. D.18.(21-22高二下·福建厦门·期中)记双曲线的左、右焦点分别为,过的直线与的左支交于两点,且,以线段为直径的圆过点,则的渐近线方程为(
)A. B.C. D.十.第三定义(共2小题)19.(22-23·江苏·期中)已知双曲线:(,)的上、下顶点分别为,,点在双曲线上(异于顶点),直线,的斜率乘积为,则双曲线的渐近线方程为(
)A. B. C. D.20.(2022·四川南充·一模)双曲线,点A,B均在E上,若四边形为平行四边形,且直线OC,AB的斜率之积为3,则双曲线E的渐近线的倾斜角为(
)A. B.或C. D.或十一.焦点三角形双余弦定理(共2小题)21.(23-24高二下·江苏盐城·期中)已知是双曲线的左、右焦点,经过点的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为(
)A. B. C. D.22.(22-23·江西·期中)如图所示,,是双曲线:(,)的左、右焦点,的右支上存在一点满足,与的左支的交点满足,则双曲线的离心率为(
)A.3 B. C. D.十二.焦点三角形角平分线型(共2小题)23.(22-23上海浦东新·期中)已知双曲线的左、右焦点分别是,,点C是双曲线右支上异于顶点的点,点D在直线上,且满足,.若,则双曲线的离心率为(
)A.3 B.4 C.5 D.624.(2023·湖北·期中)已知,分别是双曲线的左、右焦点,过的直线分别交双曲线左、右两支于A,B两点,点C在x轴上,,平分,则双曲线的离心率为(
)A. B. C. D.十三.实轴圆型求离心率(共2小题)25.(22-23高二上·浙江台州·期中)已知双曲线的左顶点为,过的直线与的右支交于点,若线段的中点在圆上,且,则双曲线的离心率为(
)A. B. C.2 D.326.(2023·江西抚州·期中)如图,已知,分别为双曲线C:的左、右焦点,过作圆O:的切线,切点为A,且切线在第三象限与C及C的渐近线分别交于点M,N,则(
)A.直线OA与双曲线C有交点B.若,则C.若,则C的渐近线方程为D.若,则C的离心率为十四.“渐近线”型绝对值范围(共2小题)27.(21-22高二上·安徽六安·期中)已知实数,满足,则的取值范围是(
)A. B. C. D.28.(23-24高二下·贵州六盘水·期中)已知实数x,y满足,则的取值范围是(
)A. B. C. D.十五.渐近线上点求离心率(共2小题)29.(23-24高二下·天津·期中)已知双曲线为坐标原点为其左、右焦点,点在的渐近线上,,且,则该双曲线的离心率为(
)A. B. C. D.230.(23-24高二下·浙江·期中)已知双曲线:的左、右焦点分别为,,点在的右支上,与的一条渐近线平行,交的另一条渐近线于点,若,则的离心率为(
)
B. C.2 D.十六.离心率范围与最值(共2小题)31.(23-24高二下·云南昆明·期中)已知分别为双曲线的左、右焦点,点为双曲线右支上一点且点在轴上的射影恰为该双曲线的右焦点交双曲线于另一点,满足,则双曲线离心率的取值范围是(
)A. B. C. D.32.(21-22高三下·安徽·期中)已知双曲线的左、右焦点分别为,,焦距为4,点M在圆上,且C的一条渐近线上存在点N,使得四边形为平行四边形,O为坐标原点,则C的离心率的取值范围为(
)A. B. C. D.十七.椭圆与双曲线共焦点(共2小题)33.(22-23高二上·湖南湘潭·期中)已知中心在坐标原点的椭圆C1与双曲线C2有公共焦点,且左,右焦点分别为F1,F2,C1与C2在第一象限的交点为P,△PF1F2是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 进口商品代理合同范本
- 2025年公积金购房贷款指南及房产交易合同样本
- 2025年企业信贷合同
- 地铁车厢广告投放合同范本
- 建筑防水材料采购合同
- 2025年信用卡个人消费信贷合同
- 2025年中原地产中介合同标准格式
- 2025年五方伙伴共同投资合同
- 2025年企业员工合同协议标准文本
- 2025年集装箱维修与恢复合同
- 一规定两守则题库563题
- 2021年春新青岛版(五四制)科学四年级下册全册教学课件
- 班级管理(课件).ppt
- 秋装校服供货售后保障方案
- 铜杆生产线设备安装工程施工方案62p
- 恶性肿瘤化疗后重度骨髓抑制病人的护理论文
- cmu200_中文使用详细说明
- 廿四山年月日时定局吉凶(择日)
- 英语句子成分结构讲解
- 《地质灾害防治知识》PPT课件.ppt
- 招生代理合作协议书
评论
0/150
提交评论