山东省青岛即墨市2024年数学九年级第一学期开学质量跟踪监视试题【含答案】_第1页
山东省青岛即墨市2024年数学九年级第一学期开学质量跟踪监视试题【含答案】_第2页
山东省青岛即墨市2024年数学九年级第一学期开学质量跟踪监视试题【含答案】_第3页
山东省青岛即墨市2024年数学九年级第一学期开学质量跟踪监视试题【含答案】_第4页
山东省青岛即墨市2024年数学九年级第一学期开学质量跟踪监视试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页山东省青岛即墨市2024年数学九年级第一学期开学质量跟踪监视试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤22、(4分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性()A.甲组比乙组的成绩稳定 B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定 D.无法确定3、(4分)关于x的一元二次方程有两个实数根,则实数m的取值范围是()A.m≥0 B.m>0 C.m≥0且m≠1 D.m>0且m≠14、(4分)若y=x+2–b是正比例函数,则b的值是()A.0 B.–2 C.2 D.–0.55、(4分)点A2,3关于原点的对称点的坐标是()A.2,3B.2,3C.2,3D.3,26、(4分)下面四个图形中,不是轴对称图形的是(

)A.

B.

C.

D.7、(4分)以矩形ABCD两对角线的交点O为原点建立平面直角坐标系,且x轴过BC中点,y轴过CD中点,y=x﹣2与边AB、BC分别交于点E、F,若AB=10,BC=3,则△EBF的面积是()A.4 B.5 C.6 D.78、(4分)对于分式方程,有以下说法:①最简公分母为(x﹣3)2;②转化为整式方程x=2+3,解得x=5;③原方程的解为x=3;④原方程无解.其中,正确说法的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在平面直角坐标系xOy中,点O是坐标原点,点B的坐标是3m,4m4,则OB的最小值是____________.10、(4分)计算:_________11、(4分)一个多边形的各内角都等于,则这个多边形的边数为______.12、(4分)若是一个完全平方式,则的值等于_________.13、(4分)计算6-15的结果是______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是AB的中点.已知AC=8cm,BD=6cm,求OE的长.15、(8分)已知y-2和x成正比例,且当x=1时,当y=4。(1)求y与x之间的函数关系式;(2)若点P(3,m)在这个函数图象上,求m的值。16、(8分)如图,将矩形ABCD置于平面直角坐标系中,其中AD边在x轴上,AB=2,直线MN:y=x﹣4沿x轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被矩形ABCD的边截得的线段长度为m,平移时间为t,m与t的函数图象如图2所示.(1)点A的坐标为,矩形ABCD的面积为;(2)求a,b的值;(3)在平移过程中,求直线MN扫过矩形ABCD的面积S与t的函数关系式,并写出自变量t的取值范围.17、(10分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分)门窗桌椅地面一班859095二班958590(1)两个班的平均得分分别是多少;(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.18、(10分)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;(4)连结PG,当PG∥AB时,请直接写出t的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在菱形ABCD中,∠A=70º,E,F分别是边AB和BC的中点,EP⊥CD于P,则∠FPC的度数为___________.20、(4分)分解因式2x3y﹣8x2y+8xy=_____.21、(4分)如图,在Rt△ABC中,∠C=90°,若AB=17,则正方形ADEC和BCFG的面积的和为________.22、(4分)若二次根式有意义,则x的取值范围是________.23、(4分)已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+=.二、解答题(本大题共3个小题,共30分)24、(8分)阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.25、(10分)已知一次函数.(1)画出该函数的图象;(2)若该函数图象与轴,轴分別交于、两点,求、两点的坐标.26、(12分)已知:四边形ABCD,E,F,G,H是各边的中点.(1)求证:四边形EFGH是平行四边形;(2)假如四边形ABCD是一个矩形,猜想四边形EFGH是什么图形?并证明你的猜想.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

直接利用函数图象判断不等式kx+3>0的解集在x轴上方,进而得出结果.【详解】由一次函数图象可知关于x的不等式kx+3>0的解集是x<2故选B.本题考查了一次函数的图象与性质和一元一次不等式及其解法,解题的关键是掌握一次函数与一元一次不等式之间的内在联系.2、B【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵30<36,∴乙组比甲组的成绩稳定.故选B.3、C【解析】

解:∵关于x的一元二次方程有两个实数根,∴,解得:m≥0且m≠1.故选C.4、C【解析】

根据正比例函数的定义可得关于b的方程,解出即可.【详解】解:由正比例函数的定义可得:2-b=0,解得:b=2.故选C.考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.5、C【解析】

根据直角坐标系中两个关于原点的对称点的坐标特点:“关于原点对称的点,横坐标、纵坐标都互为相反数”进行解答.【详解】由直角坐标系中关于原点对称的点的坐标特点:横坐标、纵坐标都互为相反数,可得点P(2,−3)关于坐标原点的对称点的坐标为(−2,3),故答案为:C.本题考查了直角坐标系中关于原点对称的两点的坐标特征,牢牢掌握其坐标特征是解答本题的关键点.6、C【解析】

轴对称图形即沿一条线折叠,被折叠成的两部分能够完全重合,根据轴对称图形的特点分别分析判断即可.【详解】ABD、都是关于一条竖直轴对称,是轴对称图形,不符合题意;C、两半颜色不一样,大小也不是关于一条轴对称,不是轴对称图形,符合题意;故答案为:C.此题主要考查轴对称图形的识别,解题的关键是熟知轴对称图形的定义.7、A【解析】

根据题意得:B(2,﹣),可得E的纵坐标为﹣,F的横坐标为2.代入解析式y=x﹣2可求E,F坐标.则可求△EBF的面积.【详解】解:∵x轴过BC中点,y轴过CD中点,AB=20,BC=3∴B(2,﹣)∴E的纵坐标为﹣,F的横坐标为2.∵y=x﹣2与边AB、BC分别交于点E、F.∴当x=2时,y=.当y=﹣时,x=2.∴E(2,﹣),F(2,)∴BE=4,BF=2∴S△BEF=BE×BF=4故选A.本题考查了一次函数图象上点的坐标特征,矩形的性质,关键是找到E,F两点坐标.8、A【解析】

观察可得最简公分母为(x﹣3),然后方程两边乘最简公分母,可以把分式方程转化为整式方程求解,注意要检验.【详解】解:最简公分母为(x﹣3),故①错误;方程的两边同乘(x﹣3),得:x=2(x﹣3)+3,即x=2x﹣6+3,∴x﹣2x=﹣3,即﹣x=﹣3,解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原分式方程无解.故②③错误,④正确.故选A.此题考查了分式方程的解法.注意解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.注意解分式方程一定要验根.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

先用勾股定理求出OB的距离,然后用配方法即可求出最小值.【详解】∵点B的坐标是3m,4m4,O是原点,∴OB=,∵,∴OB,∴OB的最小值是,故答案为.本题考查勾股定理求两点间距离,其中用配方法求出最小值是本题的重难点.10、1【解析】

根据同分母的分式相加减的法则计算即可.【详解】原式=.故答案为:1.本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.11、6【解析】

由题意,这个多边形的各内角都等于,则其每个外角都是,再由多边形外角和是求出即可.【详解】解:∵这个多边形的各内角都等于,∴其每个外角都是,∴多边形的边数为,故答案为6.本题考查了多边形的外角和,准确掌握多边形的有关概念及多边形外角和是是解题的关键.12、【解析】

根据完全平方公式的特点即可求解.【详解】∵是完全平方式,即为,∴.故答案为.此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.13、6-【解析】

直接化简二次根式进而得出答案.【详解】解:原式=6-15×,=6-.故答案为:6-.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.三、解答题(本大题共5个小题,共48分)14、OE=cm【解析】

根据菱形的性质及三角形中位线定理解答.【详解】∵ABCD是菱形,∴OA=OC,OB=OD,OB⊥OC.又∵AC=8cm,BD=6cm,∴OA=OC=4cm,OB=OD=3cm.在直角△BOC中,由勾股定理得:BC5(cm).∵点E是AB的中点,∴OE是△ABC的中位线,∴OEcm.本题考查了菱形的性质及三角形中位线定理.求出菱形的边长是解题的关键.15、(1)y=2x+2;(2)m=8【解析】

(1)设y-2=kx,把已知条件代入可求得k,则可求得其函数关系式,可知其函数类型;(2)把点的坐标代入可得到关于m的方程,可求得m的值.【详解】(1)设y-2=kx,把x=1,y=4代入求得k=2,∴函数解析式是y=2x+2;(2)∵点P(3,m)在这个函数图象上,∴m=2×3+2=8.本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.16、(4)(4,7),3;(3)a=a=3,b=6;(3)S=.【解析】

(4)根据直线解析式求出点N的坐标,然后根据函数图象可知直线平移3个单位后经过点A,从而求的点A的坐标,由点F的横坐标可求得点D的坐标,从而可求得AD的长,据此可求得ABCD的面积;(3)如图4所示;当直线MN经过点B时,直线MN交DA于点E,首先求得点E的坐标,然后利用勾股定理可求得BE的长,从而得到a的值;如图3所示,当直线MN经过点C时,直线MN交x轴于点F,求得直线MN与x轴交点F的坐标从而可求得b的值;(3)当7≤t<3时,直线MN与矩形没有交点;当3≤t<5时,如图3所示S=△EFA的面积;当5≤t<7时,如图4所示:S=SBEFG+SABG;当7≤t≤6时,如图5所示.S=SABCD﹣SCEF.【详解】解:(4)令直线y=x﹣4的y=7得:x﹣4=7,解得:x=4,∴点M的坐标为(4,7).由函数图象可知:当t=3时,直线MN经过点A,∴点A的坐标为(4,7)沿x轴的负方向平移3个单位后与矩形ABCD相交于点A,∵y=x﹣4沿x轴的负方向平移3个单位后直线的解析式是:y=x+3﹣4=x﹣4,∴点A的坐标为(4,7);由函数图象可知:当t=7时,直线MN经过点D,∴点D的坐标为(﹣3,7).∴AD=4.∴矩形ABCD的面积=AB•AD=4×3=3.(3)如图4所示;当直线MN经过点B时,直线MN交DA于点E.∵点A的坐标为(4,7),∴点B的坐标为(4,3)设直线MN的解析式为y=x+c,将点B的坐标代入得;4+c=3.∴c=4.∴直线MN的解析式为y=x+4.将y=7代入得:x+4=7,解得x=﹣4,∴点E的坐标为(﹣4,7).∴BE=.∴a=3如图3所示,当直线MN经过点C时,直线MN交x轴于点F.∵点D的坐标为(﹣3,7),∴点C的坐标为(﹣3,3).设MN的解析式为y=x+d,将(﹣3,3)代入得:﹣3+d=3,解得d=5.∴直线MN的解析式为y=x+5.将y=7代入得x+5=7,解得x=﹣5.∴点F的坐标为(﹣5,7).∴b=4﹣(﹣5)=6.(3)当7≤t<3时,直线MN与矩形没有交点.∴s=7.当3≤t<5时,如图3所示;S=;当5≤t<7时,如图4所示:过点B作BG∥MN.由(3)可知点G的坐标为(﹣4,7).∴FG=t﹣5.∴S=SBEFG+SABG=3(t﹣5)+=3t﹣3.当7≤t≤6时,如图5所示.FD=t﹣7,CF=3﹣DF=3﹣(t﹣7)=6﹣t.S=SABCD﹣SCEF=.综上所述,S与t的函数关系式为S=本题主要考查的是一次函数的综合应用,解答本题需要同学们熟练掌握矩形的性质、待定系数法求一次函数的解析式、勾股定理、三角形、平行四边形、矩形的面积公式,根据题意分类画出图形是解题的关键.17、(1)一班的平均得分90,二班的平均得分90(2)一班的卫生成绩高.【解析】

(1)、(2)利用平均数的计算方法,先求出所有数据的和,然后除以数据的总个数即可求出答案.【详解】解:(1)一班的平均得分=(95+85+90)÷3=90,二班的平均得分=(90+95+85)÷3=90,(2)一班的加权平均成绩=85×25%+90×35%+95×40%=90.75,二班的加权平均成绩=95×25%+85×35%+90×40%=89.5,所以一班的卫生成绩高.本题考查的是平均数和加权平均数的求法,关键是利用平均数和加权平均数的计算方法解答.18、(1)25;(2)能,t=;(3),;(4)和【解析】

(1)根据中位线的性质求解即可;(2)能,连结,过点作于点,由四边形为矩形,可知过的中点时,把矩形分为面积相等的两部分,此时,通过证明,可得,再根据即求出t的值;(3)分两种情况:①当点在上时;②当点在上时,根据相似的性质、线段的和差关系列出方程求解即可;(4)(注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻;当时,点,均在上,不存在.【详解】解:(1)∵D,F分别是AC,BC的中点∴DF是△ABC的中位线∴(2)能.连结,过点作于点.由四边形为矩形,可知过的中点时,把矩形分为面积相等的两部分.(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时.∵∴∵∴∴∵∴∵F是BC的中点∴∴.故.(3)①当点在上时,如图1.,,由,得.∴.②当点在上时,如图2.已知,从而,由,,得.解得.(4)和.(注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻;当时,点,均在上,不存在.)本题考查了三角形的动点问题,掌握中位线的性质、相似三角形的性质以及判定定理、平行线的性质以及判定定理、解一元一次方程的方法是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、35°【解析】

根据菱形的邻角互补求出∠B,再求出BE=BF,然后根据等腰三角形两底角相等求出∠BEF,再求出∠FEP,取AD的中点G,连接FG交EP于O,然后判断出FG垂直平分EP,再根据线段垂直平分线上的点到两端点的距离相等可得EF=FP,利用等边对等角求出∠FPE,再根据∠FPC=90°-∠FPE代入数据计算即可得解.【详解】在菱形ABCD中,连接EF,如图,∵∠A=70°,∴∠B=180°-870°=110°,∵E,F分别是边AB,BC的中点,∴BE=BF,∴∠BEF=(180°-∠B)=(180°-110°)=35°,∵EP⊥CD,AB∥CD,∴∠BEP=∠CPE=90°,∴∠FEP=90°-35°=55°,取AD的中点G,连接FG交EP于O,∵点F是BC的中点,G为AD的中点,∴FG∥DC,∵EP⊥CD,∴FG垂直平分EP,∴EF=PF,∴∠FPE=∠FEP=55°,∴∠FPC=90°-∠FPE=90°-55°=35°.故答案为:35°.本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记性质并作出辅助线求出EF=PF是解题的关键,也是本题的难点.20、2xy(x﹣2)2【解析】

原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=2xy(x2﹣4x+4)=2xy(x﹣2)2,故答案为:2xy(x﹣2)2此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21、189【解析】【分析】小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC1+BC1,对于Rt△ABC,由勾股定理得AB1=AC1+BC1.AB长度已知,故可以求出两正方形面积的和.【详解】正方形ADEC的面积为:AC1,正方形BCFG的面积为:BC1;在Rt△ABC中,AB1=AC1+BC1,AB=17,则AC1+BC1=189,故答案为:189.【点睛】本题考查了勾股定理的应用,勾股定理应用的前提条件是在直角三角形中.22、【解析】

根据二次根式有意义的条件可得-x≥0,再解不等式即可.解答【详解】由题意得:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论