版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页山东省临沂兰陵县联考2025届九上数学开学质量跟踪监视试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)对于反比例函数,当时,y的取值范围是()A. B.C. D.2、(4分)如图,在中,,则的长为()A.2 B.4 C.6 D.83、(4分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是().A.50元,30元 B.50元,40元C.50元,50元 D.55元,50元4、(4分)对一组数据:﹣2,1,2,1,下列说法不正确的是()A.平均数是1 B.众数是1 C.中位数是1 D.极差是45、(4分)若=2﹣a,则a的取值范围是()A.a=2 B.a>2 C.a≥2 D.a≤26、(4分)不等式>﹣1的正整数解的个数是()A.1个 B.2个 C.3个 D.4个7、(4分)计算的正确结果是()A. B.1 C. D.﹣18、(4分)已知一组数据:5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的()A.平均数但不是中位数B.平均数也是中位数C.众数D.中位数但不是平均数二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为_____________.10、(4分)如图,的对角线相交于点,点分别是线段的中点,若厘米,的周长是厘米,则__________厘米.11、(4分)如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有____对全等三角形.12、(4分)若关于x的方程+=0有增根,则m的值是_____.13、(4分)往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:△AFD≌△BFE;(2)求证:四边形AEBD是菱形;(3)若DC=,tan∠DCB=3,求菱形AEBD的面积.15、(8分)如图,矩形ABCD和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.(1)求证:;(2)求证:;16、(8分)9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.无锡与北京之间的火车票和飞机票价如下:火车(高铁二等座)全票524元,身高1.1~1.5米的儿童享受半价票;飞机(普通舱)全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.(1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x,y的值;(2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14000元,是否够用?如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?17、(10分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.18、(10分)如图,一次函数y=kx+b(k≠0)经过点B(0,1),且与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).(1)求一次函数与反比例函数的解析式;(2)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边于点E,则DE等于_____㎝.20、(4分)如果的值为负数,则x的取值范围是_____________.21、(4分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别ABCDEF类型足球羽毛球乒乓球篮球排球其他人数10462那么,其中最喜欢足球的学生数占被调查总人数的百分比为______%.22、(4分)已知y+2与x-3成正比例,且当x=0时,y=1,则当y=4时,x的值为________.23、(4分)在实数范围内分解因式:3x2﹣6=_____.二、解答题(本大题共3个小题,共30分)24、(8分)已知二次函数(,为常数).(1)当,时,求二次函数的最小值;(2)当时,若在函数值的情况下,只有一个自变量的值与其对应,求此时二次函数的解析式;(3)当时,若在自变量的值满足≤≤的情况下,与其对应的函数值的最小值为21,求此时二次函数的解析式.25、(10分)“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?26、(12分)如图,平面直角坐标系中,直线AB:y=-+b交y轴于点A(0,1),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上的一动点,且在点D的上方,设P(1,n).(1)求直线ABd解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当=2时,①求出点P的坐标;②在①的条件下,以PB为边在第一象限作等腰直角△BPC,直接写出点C的坐标.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据反比例函数的k=-6<0,则其图象在第二象限上,y随x的增大而增大,则x=-1时y取得最小值,从而可以得到结果.【详解】∵k=-6<0,∴的图象在第二象限上,y随x的增大而增大,∴时,∴.故选A.此题重点考查学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键.2、B【解析】
由平行四边形的对角线互相平分,可得AO的长度.【详解】在中,,∴AO=故答案为B本题考查了平行四边形对角线互相平分的性质,利用该性质是解题的关键.3、C【解析】
1出现了3次,出现的次数最多,则众数是1;把这组数据从小到大排列为:20,25,30,1,1,1,55,最中间的数是1,则中位数是1.故选C.4、A【解析】试题分析:A、这组数据的平均数是:(﹣2+1+2+1)÷4=,故原来的说法不正确;B、1出现了2次,出现的次数最多,则众数是1,故原来的说法正确;C、把这组数据从小到大排列为:﹣2,1,1,2,中位数是1,故原来的说法正确;D、极差是:2﹣(﹣2)=4,故原来的说法正确.故选A.考点:极差,算术平均数,中位数,众数.5、D【解析】
根据二次根式有意义的条件分析可得解.【详解】∵=2-ɑ,∴a-2≤0,即a≤2,故选D.6、D【解析】,去分母得3(x+1)>2(2x+2)-6,去括号得3x+3>4x+4-6,移项,合并同类项得-x>-5,系数化为1得x<5,所以满足不等式的正整数的个数有4个,故选D.7、A【解析】8、B【解析】
根据平均数,中位数,众数的概念求解即可.【详解】45出现了三次是众数,按从小到大的顺序排列得到第五,六个数分别为35,45,所以中位数为40;由平均数的公式解得平均数为40;所以40不但是平均数也是中位数.故选:B.考查平均数,中位数,众数的求解,掌握它们的概念是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】试题分析:在□ABCD中,BD为对角线,E、F分别是AD,BD的中点,所以EF是△DAB的中位线,因为EF=3,所以AB=1,所以DC=1.考点:中位线和平行四边形的性质点评:该题较为简单,主要考查学生对三角形中位线的性质和平行四边形性质的掌握程度.10、【解析】
先由平行四边形的性质求出OA+OB的值,再由的周长是厘米,求出AB的值,然后根据三角形的中位线即可求出EF的值.【详解】∵四边形ABCD是平行四边形,厘米,∴OA+OB=12厘米,∵的周长是厘米,∴AB=20-12=8厘米,∵点分别是线段的中点,∴EF是的中位线,∴EF=AB=4厘米.故答案为:4.本题考查了平行四边形的性质,三角形中位线的判定与性质.三角形的中位线平行于第三边,并且等于第三边的一半.11、1【解析】试题分析:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在Rt△AEP与Rt△BFP中,,∴Rt△AEP≌Rt△BFP,∴图中有1对全等三角形,故答案为1.考点:角平分线的性质,全等三角形的判定和性质.12、3【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【详解】去分母得:2﹣x+m=0,解得:x=2+m,由分式方程有增根,得到x﹣5=0,即x=5,把x=5代入得:m=3,故答案为:3此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.13、【解析】
求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.【详解】设最小正方形的边长为1,则小正方形边长为2,阴影部分面积=2×2×4+1×1×2=18,白色部分面积=2×2×4+1×1×2=18,故石子落在阴影区域的概率为.故答案为:.本题考查了概率,正确运用概率公式是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析;(3)S菱形AEBD=1.【解析】
(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(3)解直角三角形求出EF的长即可解决问题;【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE(AAS);(2)∵△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(3)∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=•AB•DE==1.本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15、(1)详见解析;(2)详见解析.【解析】
(1)根据题意可先证明四边形AHCE为平行四边形,再根据正方形的性质得到∴,,故可证明四边形AHGF是平行四边形,即可求解;(2)根据四边形AHGF是平行四边形,得,根据四边形ABCD是矩形,可得,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∵四边形ABCD是矩形,且E、H分别为AD、BC的中点,∴,,∴四边形AHCE为平行四边形,∴,,又∵四边形ECGF为正方形,∴,,∴,,∴四边形AHGF是平行四边形,∴;(2)证明:∵四边形AHGF是平行四边形,∴,∵四边形ABCD是矩形,∴,∴,又∵,∴;此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.16、(1)x=500y=54;(2)标准间房价每日每间不能超过450【解析】
(1)结合旅游总共开支了13668元,以及他们四个人在北京的住宿费刚好等于表中所示其他三项费用之和分别得出等式,列出方程组,解得答案即可;(2)结合他们往返都坐飞机(成人票五五折),求出总费用,进而求出答案.【详解】(1)往返高铁费:(524×3+524÷2)×2=3668元依题意列方程组:2×5x=100×5×4+20y+1920解得:x=500y=54(2)往返交通费:524×3+524÷2+1240×0.55×3+1240÷2=45004500+5000+2000+1080+1920=14500>14000,不够;设预定的房间房价每天a元则4500+2000+1080+1920+10a≤14000,解得a≤450,答:标准间房价每日每间不能超过450元.点睛:本题主要考查了二元一次方程组的应用、一元一次不等式的应用,能正确地根据题意找出等量关系、不等关系,从而列出方程组、不等式是解题的关键.17、(1)证明见解析(2)1【解析】分析:(1)利用“AAS”可证明△EAF≌△EDC,则AF=DC,从而得到BD=DC;(2)先证明四边形AFBD是平行四边形,再利用等腰三角形的性质证明AD⊥BC,则四边形AFBD为矩形,然后计算出AD后再计算四边形AFBD的面积.详解:(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=1.点睛:本题考查了全等三角形的判定与性质:在判定三角形全都时,关键是选择恰当的判定条件,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当的辅助线构造三角形.18、(1)y=x+1;y=;(2)当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【解析】
(1)把点A、B坐标代入y=kx+b,把点A的坐标代入y=,根据待定系数法即可求得一次函数与反比例函数的解析式;(2)联立方程,求得得一次函数与反比例函数的图象交点坐标,然后利用函数图象的位置关系求解.【详解】(1)∵一次函数y=kx+b(k≠0)经过点A(1,2),点B(0,1),∴,解得k=1,b=1∴一次函数解析式为y=x+1;∵点A(1,2)在反比例函数y=的图象上,∴m=1×2=2,∴反比例函数解析式为y=;(2)∵方程组的解为或,∴一次函数与反比例函数的图象交点坐标为(1,2)、(﹣2,﹣1),∴当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.一、填空题(本大题共5个小题,每小题4分,共20分)19、3【解析】
∵BE平分∠ABC,∴∠ABE=∠CBE,又∵∠ABE和∠CEB为内错角,∴∠ABE=∠CEB,∴∠CEB=∠CBE,∴CE=BC=AD=6㎝,∵DC=AB=9㎝,∴DE=3cm.20、.【解析】
根据分式的值为负数,分子的最小值为1,得出分母小于0列出关于x的不等式,求出不等式的解集即可得到x的范围.【详解】∵,,∴,解得.故答案为本题考查分式的值.分式的值要为负,那么分母和分子必须异号,在本题中分子已经为正,那么分母只能为负.21、1【解析】
依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.【详解】解:∵被调查学生的总数为10÷20%=50人,∴最喜欢篮球的有50×32%=16人,则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%.故答案为:1.本题考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.22、-1【解析】
解:设y+2=k(x-1),∵x=0时,y=1,∴k(0-1)=1+2,解得:k=-1,∴y+2=-(x-1),即y=-x+1,当y=4时,则4=-x+1,解得x=-1.23、3(x+)(x﹣)【解析】
先提取公因式3,然后把2写成2,再利用平方差公式继续分解因式即可.【详解】3x2-6,=3(x2-2),=3(x2-2),=3(x+)(x-).故答案为:3(x+)(x-).本题考查了实数范围内分解因式,注意把2写成2的形式继续进行因式分解.二、解答题(本大题共3个小题,共30分)24、(1)二次函数取得最小值-1;(2)或;(3)或.【解析】
(1)当b=2,c=-3时,二次函数的解析式为,把这个解析式化为顶点式利用二次函数的性质即可求最小值.(2)当c=5时,二次函数的解析式为,又因函数值y=1的情况下,只有一个自变量x的值与其对应,说明方程有两个相等的实数根,利用即可解得b值,从而求得函数解析式.(3)当c=b2时,二次函数的解析式为,它的图象是开口向上,对称轴为的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即<b;②对称轴位于b≤x≤b+3这个范围时,即b≤≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即>b+3,根据列出的不等式求得b的取值范围,再根据x的取值范围b≤x≤b+3、函数的增减性及对应的函数值y的最小值为21可列方程求b的值(不合题意的舍去),求得b的值代入也就求得了函数的表达式.【详解】解:(1)当b=2,c=-3时,二次函数的解析式为,即.∴当x=-1时,二次函数取得最小值-1.(2)当c=5时,二次函数的解析式为.由题意得,方程有两个相等的实数根.有,解得,∴此时二次函数的解析式为或.(3)当c=b2时,二次函数的解析式为.它的图象是开口向上,对称轴为的抛物线.①若<b时,即b>0,在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而增大,故当x=b时,为最小值.∴,解得,(舍去).②若b≤≤b+3,即-2≤b≤0,当x=时,为最小值.∴,解得(舍去),(舍去).③若>b+3,即b<-2,在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而减小,故当x=b+3时,为最小值.∴,即解得(舍去),.综上所述,或b=-1.∴此时二次函数的解析式为或.考点:二次函数的综合题.25、(1)30(2)y=80x﹣30(1.5≤x≤2.5);(3)他们出发2小时,离目的地还有40千米【解析】
(1)先设函数解析式,再根据点坐标求解析式,带入数值求解即可(2)根据点坐标求AB段的函数解析式(3)根据题意将x=2带入AB段解析式中求值即可.【详解】解:(1)设OA段图象的函数表达式为y=kx.
∵当x=1.5时,y=90,
∴1.5k=90,
∴k=60.
∴y=60x(0≤x≤1.5),
∴当x=0.5时,y=60×0.5=30.
故他们出发半小时时,离家30千米;
(2)设AB段图象的函数表达式为y=k′x+b.
∵A(1.5,90),B(2.5,170)在AB上,
∴①1.5k′+b=90②2.5k′+b=170
解得k′=80b=-30
∴y=80x-30(1.5≤x≤2.5);
(3)∵当x=2时,y=80×2-30=130,
∴170-130=40.
故他们出发2小时时,离目的地还有40千米.此题重点考察学生对一次函数的实际应用能力,利用待定系数法来确定一次函数的表达式是解题的关键.26、(1)y=-x+1,点B(3,0);(2)n-1;(3)①P(1,2);②(3,4)或(5,2)或(3,2).【解析】
(1)将点A的坐标代入直线AB的解析式可求得b值,可得AB的解析式,继而令y=0,求得相应的x值即可得点为B的坐标;(2)过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 正美电子商务课程设计
- 《我国有限责任公司股权质押制度研究》
- 公交站牌灯箱广告合同3篇
- 加油站施工合同中的知识产权保护3篇
- 借证件的协议3篇
- 质押债权转让合同范例
- 代领款授权委托协议3篇
- 化妆品品牌市场推广专员合同3篇
- 公共事业项目经理合同3篇
- 合同负债借贷方向及账务处理3篇
- 山东省高等医学院校临床教学基地水平评估指标体系与标准(修订)
- 空白货品签收单
- 青海省全省市县乡镇卫生院街道社区卫生服务中心基本公共卫生服务医疗机构信息名单目录450家
- 网络暴力的法律规制开题报告
- 水泥混凝土路面施工方案85171
- 泰康人寿养老社区介绍课件
- T∕CSTM 00584-2022 建筑用晶体硅光伏屋面瓦
- 环境保护知识培训
- 《民航服务礼仪》项目五 地面服务礼仪
- 最新干部(职工)基本信息审核表格式
- 国家开放大学实验学院生活中的法律第二单元测验答案
评论
0/150
提交评论