山东省莱芜市莱城区腰关中学2024-2025学年数学九上开学监测试题【含答案】_第1页
山东省莱芜市莱城区腰关中学2024-2025学年数学九上开学监测试题【含答案】_第2页
山东省莱芜市莱城区腰关中学2024-2025学年数学九上开学监测试题【含答案】_第3页
山东省莱芜市莱城区腰关中学2024-2025学年数学九上开学监测试题【含答案】_第4页
山东省莱芜市莱城区腰关中学2024-2025学年数学九上开学监测试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页山东省莱芜市莱城区腰关中学2024-2025学年数学九上开学监测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列根式中,不.是.最简二次根式的是()A.2 B.3 C.7 D.12、(4分)下列图形不是中心对称图形的是A. B. C. D.3、(4分)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是()A.22 B.20C.22或20 D.184、(4分)如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD为矩形,则OB的长度为()A.4 B.3 C.2 D.15、(4分)在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD6、(4分)如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是()A. B. C. D.7、(4分)已知直线(m,n为常数)经过点(0,-4)和(3,0),则关于x的方程的解为A. B. C. D.8、(4分)一元二次方程x(x+3)=0的根为()A.0 B.3 C.0或﹣3 D.0或3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,机器人移动第2018次即停止,则的面积是______.10、(4分)有一组数据如下:3、7、4、6、5,那么这组数据的方差是_____.11、(4分)一组数据-3,x,-2,3,1,6的中位数是1,则其方差为________12、(4分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为13、(4分)在直角坐标系中,点P(﹣2,3)到原点的距离是.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.15、(8分)阅读下列解题过程:;.请回答下列问题:(1)计算;(2)计算.16、(8分)綦江区某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下:甲队178177179179178178177178177179乙队:分析数据:两组样本数据的平均数、中位数、众数、方差如下表所示:整理、描述数据:平均数中位数众数方差甲队178178b0.6乙队178a178c(1)表中a=______,b=______,c=______;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.17、(10分)某学校需要置换一批推拉式黑板,经了解,现有甲、乙两厂家报价均为100元/米1,且提供的售后服务完全相同,为了促销,甲厂家表示,每平方米都按七折计费;乙厂家表示,如果黑板总面积不超过10米1,每平方米都按九折计费,超过10米1,那么超出部分每平方米按六折计费.假设学校需要置换的黑板总面积为x米1.(1)请分别写出甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;(1)请你结合函数图象的知识帮助学校在甲、乙两厂家中,选择一家收取总费用较少的.18、(10分)如图,在正方形网格中,每个小正方形的边长为1,ABC为格点三角形(即A,B,C均为格点),求BC上的高.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.20、(4分)已知直线在轴上的截距是-2,且与直线平行,那么该直线的解析是______21、(4分)某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.22、(4分)如图,某港口P位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港东口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是________.23、(4分)若关于x的分式方程有增根,则a的值为_______二、解答题(本大题共3个小题,共30分)24、(8分)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.25、(10分)随着“一带一路”的不断建设与深化,我国不少知名企业都积极拓展海外市场,参与投资经营.某著名手机公司在某国经销某种型号的手机,受该国政府经济政策与国民购买力双重影响,手机价格不断下降.分公司在该国某城市的一家手机销售门店,今年5月份的手机售价比去年同期每台降价1000元,若卖出同样多的手机,去年销售额可达10万元,今年销售额只有8万元.(1)今年5月份每台手机售价多少元?(2)为增加收入,分公司决定拓展产品线,增加经销某种新型笔记本电脑.已知手机每台成本为3500元,笔记本电脑每台成本为3000元,分公司预计用不少于4.8万元的成本资金少量试生产这两种产品共15台,但因资金所限不能超过5万元,共有几种生产方案?(3)如果笔记本电脑每台售价3800元,现为打开笔记本电脑的销路,公司决定每售出1台笔记本电脑,就返还顾客现金a元,要使(2)中各方案获利最大,a的值应为多少?最大利润多少?26、(12分)某市联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A,B两种套餐收费一样?(3)什么情况下A套餐更省钱?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

按照最简二次根式的定义判断即可.【详解】解:因为12=1×22×2=22,所以12不是最简二次根式,而2本题考查了最简二次根式的定义,判定一个二次根式是不是最简二次根式的方法,看是否同时满足最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式),同时满足的就是最简二次根式,否则就不是.2、D【解析】

根据中心对称图形的概念求解.【详解】A、是中心对称图形.故不能选;

B、是中心对称图形.故不能选;

C、是中心对称图形.故不能选;

D、不是中心对称图形.故可以选.故选D本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、C【解析】试题解析:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,如图,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=1.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=2.故选C.考点:平行四边形的性质.4、B【解析】试题解析:假如平行四边形ABCD是矩形,OA=OC,OB=OD,AC=BD,∴OA=OB=1.故选B.点睛:对角线相等的平行四边形是矩形.5、C【解析】

根据平行四边形的判定方法得出A、B、D正确,C不正确;即可得出结论.【详解】解:A.∵OA=OC,OB=OD∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∴A正确,故本选项不符合要求;B.∵AB∥CD∴∠DAO=∠BCO,在△DAO与△BCO中,∴△DAO≌△BCO(ASA),∴OD=OB,

又OA=OC,

∴四边形ABCD是平行四边形,∴B正确,故本选项不符合要求;C.由AB=DC,OA=OC,∴无法得出四边形ABCD是平行四边形.故不能能判定这个四边形是平行四边形,符合题意;∵AB∥DC,D.∵∠ADB=∠CBD,∠BAD=∠BCD∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形),∴D正确,故本选项不符合要求;故选C.本题考查平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.6、B【解析】

根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=24=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=2(12-x)=12-x(8<x12),由以上各段函数解析式可知,选项B正确,故选B.本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.7、C【解析】

将点(0,−4)和(1,0)代入y=mx+n,求出m,n的值,再解方程mx−n=0即可.【详解】解:∵直线y=mx+n(m,n为常数)经过点(0,−4)和(1,0),∴n=−4,1m+n=0,解得:m=,n=−4,∴方程mx−n=0即为:x+4=0,解得x=−1.故选:C.本题考查了一次函数与一元一次方程,待定系数法求一次函数的解析式,解一元一次方程.求出m,n的值是解题的关键.8、C【解析】

方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程x(x+3)=0,可得x=0或x+3=0,解得:x1=0,x2=−3.故选C.此题考查解一元二次方程-因式分解法,解题关键在于掌握其定义.二、填空题(本大题共5个小题,每小题4分,共20分)9、504m2【解析】

由OA=2n知OA=+1=1009,据此得出AA=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA=2n,∵2018÷4=504…2,∴OA=+1=1009,∴AA=1009-1=1008,则△OAA的面积是×1×1008=504m2此题考查规律型:数字变换,解题关键在于找到规律10、1【解析】试题分析:平均数为:(3+7+4+6+5)÷5=5,S1=×[(3﹣5)1+(7﹣5)1+(4﹣5)1+(6﹣5)1+(5﹣5)1]=×(4+4+1+1+0)=1.故答案为1.点睛:本题考查方差的定义:一般地,设n个数据x1,x1,…xn的平均数为,则方差S1=[(x1-)1+(x1-)1+…+(xn-)1],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11、9【解析】

根据中位数的定义,首先确定x的值,再计算方差.【详解】解:首先根据题意将所以数字从小到达排列,可得-3,-2,1,3,6因为这五个数的中位数为1再增加x后要使中位数为1,则因此可得x=1所以平均数为:所以方差为:故答案为9.本题主要考查根据中位数求未知数和方差的计算,关键在于根据题意计算未知数.12、3【解析】试题解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考点:平行线分线段成比例.13、.【解析】试题分析:在平面直角坐标系中找出P点,过P作PE垂直于x轴,连接OP,由P的坐标得出PE及OE的长,在直角三角形OPE中,利用勾股定理求出OP的长,即为P到原点的距离.如图,过P作PE⊥x轴,连接OP,由P(﹣2,3),可得PE=3,OE=2,在Rt△OPE中,根据勾股定理得OP2=PE2+OE2,代入数据即可求得OP=,即点P在原点的距离为.考点:勾股定理;点的坐标.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析(2)1【解析】分析:(1)利用“AAS”可证明△EAF≌△EDC,则AF=DC,从而得到BD=DC;(2)先证明四边形AFBD是平行四边形,再利用等腰三角形的性质证明AD⊥BC,则四边形AFBD为矩形,然后计算出AD后再计算四边形AFBD的面积.详解:(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=1.点睛:本题考查了全等三角形的判定与性质:在判定三角形全都时,关键是选择恰当的判定条件,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当的辅助线构造三角形.15、(1);(2)【解析】

(1)通过分母有理化进行计算;(2)先分母有理化,然后合并即可.【详解】解:(1)(2)原式.考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16、(1);;;(2)选甲队好【解析】

(1)根据中位数定义,众数的的定义方差的计算公式代值计算即可;(2)根据方差的意义即可得出答案.【详解】解:(1)根据图象可知道乙队一个10人,中位数在第五六位之间,故为;估计表中数据178出现了4次,出现的次数最多,所以;根据方差公式即可计算出故答案为:;;.(2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8.∴甲队的方差小于乙队的方差.∴甲队的身高比乙队整齐..∴选甲队比较好.此题考查方差,加权平均数,中位数,众数,解题关键在于看懂图中数据17、(1)甲厂家的总费用:y甲=140x;乙厂家的总费用:当0<x≤10时,y乙=180x,当x>10时,y乙=110x+1100;(1)详见解析.【解析】

(1)根据题目中的数量关系即可得到甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;(1)分别画出甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象,结合图象分析即可.【详解】解:(1)甲厂家的总费用:y甲=100×0.7x=140x;乙厂家的总费用:当0<x≤10时,y乙=100×0.9x=180x,当x>10时,y乙=100×0.9×10+100×0.6(x﹣10)=110x+1100;(1)甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象如图所示:若y甲=y乙,140x=110x+1100,x=60,根据图象,当0<x<60时,选择甲厂家;当x=60时,选择甲、乙厂家都一样;当x>60时,选择乙厂家.本题主要考查了一次函数在实际生活中的应用,涉及到的知识有运用待定系数法求函数的解析式,平面直角坐标系中交点坐标的求法,函数图象的画法等,从图表及图象中获取信息是解题的关键,属于中档题.18、.【解析】

根据网格,由勾股定理求,,的值,即可得到为直角三角形,利用“面积法”求斜边上的高.【详解】中,,,,,为直角三角形,设边上的高为,则有,.本题考查了勾股定理的逆定理的运用,充分利用网格,构造直角三角形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、乙【解析】

由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.故答案为:乙.本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.20、【解析】【分析】根据一次函数的性质可求得.对于直线在轴上的截距是b;k是斜率,决定直线的位置关系.【详解】因为,已知直线在轴上的截距是-2,所以,b=-2.又直线与直线平行,所以,k=3.故答案为:【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数解析式中系数的意义.21、1.【解析】

根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果.【详解】解:设王艳骑自行车的速度为xm/min,则爸爸的速度为:(5x+x)÷5=x(m/min),由函数图象可知,公司距离演奏厅的距离为9400米,∵公司位于家正西方3900米,∴家与演奏厅的距离为:9400﹣3900=5500(米),根据题意得,5x+5×x+()×=5500,解得,x=200(m/min),∴爸爸的速度为:(m/min)∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣()×300=1(m).故答案为:1.本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.22、南偏东30°【解析】

直接得出AP=12nmile,PB=16nmile,AB=20nmile,利用勾股定理逆定理以及方向角得出答案.【详解】如图,由题意可得:AP=12nmile,PB=16nmile,AB=20nmile,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,∵“远洋”号沿着北偏东60°方向航行,∴∠BPQ=30°,∴“长峰”号沿南偏东30°方向航行;故答案为南偏东30°.此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.23、3【解析】

先根据分式方程的求解去掉分式方程的分母,再把增根x=5代入即可求出a的值.【详解】解去分母得2-(x-a)=7(x-5)把x=5代入得2-(5-a)=0,解得a=3故填:3.此题主要考查分式方程的求解,解题的关键是熟知分式方程增根的定义.二、解答题(本大题共3个小题,共30分)24、.【解析】试题分析:因为CD⊥AB,所以△ACD和△BCD都是直角三角形,都利用勾股定理表示CD的长,得到方程即可求解.试题解析:根据题意CD2=AC2-AD2=32-(2BD)2=9-4BD2,CD2=BC2-BD2=22-BD2=4-BD2,∴9-4BD2=4-BD2,解得BD2=,∴BD=.考点:勾股定理.25、(1)今年5月份每台手机售价4000元;(2)5种生产方案;(3)a的值应为2元,最大利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论