4.4.3 不同函数增长的差异(课件)_第1页
4.4.3 不同函数增长的差异(课件)_第2页
4.4.3 不同函数增长的差异(课件)_第3页
4.4.3 不同函数增长的差异(课件)_第4页
4.4.3 不同函数增长的差异(课件)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

指数函数与对数函数第四章4.4.3不同函数增长的差异4.4对数函数课程标准核心素养结合现实情境中的具体问题,利用计算工具,比较对数函数、一元一次函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.通过对三种不同函数增长差异的学习,提升“数学抽象”、“逻辑推理”、“数学运算”的核心素养.栏目索引课前自主预习课堂互动探究随堂本课小结课前自主预习知识点三种不同函数增长的差异y=ax(a>1)y=kx(k>0)y=logax(a>1)在(0,+∞)上的增减性增函数增函数增函数图象的变化随x增大逐渐与______________增长速度固定随x增大逐渐与______________增长速度①y=ax(a>1):随着x的增大,y增长速度______________,会远远大于y=kx(k>0)的增长速度,y=logax(a>1)的增长速度______________;②存在一个x0,当x>x0时,有_______________y轴平行x轴平行越来越快越来越慢ax>xn>logax

[微体验]1.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了(

)A.10天

B.15天C.19天

D.2天答案C

解析荷叶覆盖水面面积y与生长时间x的函数关系为y=2x,当x=20时,长满水面,所以生长19天时,布满水面面积的一半.答案C

解析表中数据体现爆炸式增长,符合的函数模型为指数函数模型.3.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=log2x+100,丙:y=1.005x,则投资500元,1000元,1500元时,应分别选择________方案.解析将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.答案乙、甲、丙课堂互动探究探究一几类函数模型的增长差异(2)如图是四个不同形状,但高度均为H的玻璃瓶.已知向其中一个水瓶注水时,注水量与水深的函数关系如图所示,试确定水瓶的形状是图中的(

)答案B

解析看图显然图象从左向右,图象上升先快后慢,也就是说,向瓶中注入相同的水量(如单位体积)时,水的高度改变得越来越大.所以,如果向瓶中匀速注水,则水的高度上升速度先慢后快,注入相同的水,高度上升得快,说明瓶的这部分较细,同样如果水的高度上升得慢,说明瓶的这部分较粗,从图象上看,水的高度上升得越来越快,所以瓶子是下面较粗,越向上越细,所以水瓶的形状应是图B.[方法总结]常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=ax(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,被形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=logax(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.解析以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.答案y2

高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是(

)探究二函数模型的增长差异在函数图象上的体现答案B

解析由图得水深h越大,水的体积v就越大,故v=f(h)是增函数,且曲线的斜率应该是先变大后变小.[方法总结]由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数.[跟踪训练2]

函数f(x)=lg

x,g(x)=0.3x-1的图象如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).解(1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg

x.(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x);当x=x1或x=x2时,f(x)=g(x).1.三类不同增长的函数模型(1)增长速度不变的函数模型是一次函数模型.(2)增长速度最快即呈现爆炸式增长的函数模型是指数型函数模型.(3)增长速度较慢的函数模型是对数型函数模型.随堂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论