版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全等三角形基本模型训练全等模型一一线三等角模型例题:【探究】如图①,点B、C在的边上,点E、F在内部的射线上,分别是、△CAF的外角.若,,求证:△ABE≌△CAF.【应用】如图②,在等腰三角形ABC中,,,点D在边上,,点E、F在线段上,,若的面积为9,则与的面积之和为.巩固训练1.(23-24八年级上·广西南宁·开学考试)如图,是经过顶点C的一条直线,,E、F分别是直线上两点,且.(1)若直线经过的内部,且E、F在射线上.①如图1,若,,试判断和的数量关系,并说明理由;②如图2,若,请添加一个关于α与关系的条件,使①中的条件仍然成立,并说明理由.(2)如图3.若直线经过的外部,,请提出关于,,三条线段数量关系的合理猜想,并说明理由.2.(24-25八年级上·全国·假期作业)(1)如图①,已知:中,,,直线经过点,于,于,求证:;(2)拓展:如图②,将(1)中的条件改为:中,,、、三点都在直线上,并且,为任意锐角或钝角,请问结论是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在中,是钝角,,,,直线与的延长线交于点,若,的面积是,求与的面积之和.全等模型二三垂直模型例题:通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A在直线l上,,过点B作于点C,过点D作交于点E.得.又,可以推理得到.进而得到结论:_____,_____.我们把这个数学模型称为“K字”模型或“一线三直角”模型;(2)如图2,∠于点C,于点E,与直线交于点,求证:.巩固训练1.(2024上·吉林辽源·九年级统考期末)如图,在中,,,直线经过点C,且于D,于E.(1)当直线绕点C旋转到①的位置时,求证:①;②;(2)当直线绕点C旋转到②的位置时,求证:;(3)当直线绕点C旋转到③的位置时,试问、、具有怎样的数量关系?请直接写出这个等量关系,不需要证明.2.(23-24八年级上·山西吕梁·期末)数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系问题情境:如图1,三角形纸片中,,.将点C放在直线上,点A,B位于直线的同侧,过点A作于点D初步探究:(1)在图1的直线上取点E,使,得到图2,猜想线段与的数量关系,并说明理由;(2)小颖又拿了一张三角形纸片继续进行拼图操作,其中,.小颖在图1的基础上,将三角形纸片的顶点P放在直线上,点M与点B重合,过点N作于点H.如图3,探究线段,,之间的数量关系,并说明理由3.(23-24七年级下·云南昆明·期末)综合与实践:(1)【问题情境】在综合与实践课上,何老师对各学习小组出示了一个问题:如图1,,,,,垂足分别为点,.请证明:.(2)【合作探究】“希望”小组受此问题的启发,将题目改编如下:如图2,,,点是上一动点,连接,作且,连接交于点.若,,请证明:点为的中点.(3)【拓展提升】“创新”小组在“希望”小组的基础上继续提出问题:如图3,,,点是射线上一动点,连接,作且,连接交射线于点.若,请直接写出的值.全等模型三旋转型模型例题:如图1,把一块直角三角尺ABC的直角顶点C放置在水平直线MN上,在中,,,试回答下列问题:(1)若把三角尺ABC绕着点C按顺时针方向旋转,当AB∥MN时,度;(2)在三角尺ABC绕着点C按顺时针方向旋转过程中,分别作AM⊥MN于M,BN⊥MN与N,若,,求MN.(3)三角尺ABC绕着点C按顺时针方向继续旋转到图3的位置,其他条件不变,则AM、BN与MN之间有什么关系?请说明理由.巩固训练1.如图,和都是等腰直角三角形,.(1)猜想:如图1,点在上,点在上,线段与的数量关系是______,位置关系是______;(2)探究:把绕点旋转到如图2的位置,连接,,(1)中的结论还成立吗?说明理由;(3)拓展:把绕点在平面内自由旋转,若,,当,,三点在同一直线上时,则的长是______.2.在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.全等模型四倍长中线模型例题:(23-24八年级上·湖北省直辖县级单位·期中)我们规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,,,.回答下列问题:(1)求证:和是兄弟三角形.(2)取的中点,连接,试说明.小王同学根据要求的结论,想起了老师上课讲的“中线(点)倍延”的辅助线构造方法,解决了这个问题.①请在图中通过作辅助线构造,并证明.②求证:.巩固训练1.(23-24七年级下·山东济南·期末)如图,中,为的中点,是上一点,连接并延长交于.若,,,那么的长度为.2.(23-24七年级下·山东济南·期中)阅读下列材料,完成相应任务.数学活动课上,老师提出了如下问题:如图1,已知中,是边上的中线.求证:智慧小组的证法如下:证明:如图2,延长至E,使,∵是边上的中线,∴,在△BDE和△CDA中,,∴△BDE≌△
CDA(依据1),∴,在中,(依据2),∴.(1)任务一:上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:.【归纳总结】上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)任务二:如图3,,,则的取值范围是;A.; B.; C.(3)任务三:利用“倍长中线法”,解决下列问题.如图4,中,,D为中点,求证:.3.(2023上·江苏南通·八年级统考期中)课外兴趣小组活动时,老师提出了如下问题:如图1,中,若,,求边上的中线的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长到E,使,连接.请根据小明的方法思考:(1)由已知和作图能得到,得到,在中求得的取值范围,从而求得的取值范围是.方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)如图2,是的中线,,,,试判断线段与的数量关系,并加以证明;(3)如图3,在中,D,E在边上,且.求证:.4.(22-23七年级下·江苏泰州·期末)【发现问题】(1)数学活动课上,王老师提出了如下问题:如图1,,【探究方法】第一小组经过合作交流,得到了如下的解决方法:①延长到E,使得;②连接,通过三角形全等把转化在中;③利用三角形的三边关系可得的取值范围为,从而得到的取值范围是______;方法总结:解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形【问题解决】(2)如图2,是的中线,是的中线,,下列四个选项中:直接写出所有正确选项的序号是______.①;②;③;④【问题拓展】(3)如图3,,,与互补,连接E是的中点,求证:;(4)如图4,在(3)的条件下,若,延长交于点,,,则的面积是______.全等模型五截长补短模型例题:在四边形中,点C是边的中点.(1)如图①,平分,,写出线段,,间的数量关系及理由;(2)如图②,平分,平分,,写出线段,,,间的数量关系及理由.巩固训练1.(23-24七年级下·四川成都·期中)在的高、交于点,.(1)如图1,求证:;(2)如图1,求的度数;(3)如图2,延长到点,过点作的垂线交的延长线于点,当时,探究线段、、的数量关系,并证明你的结论.2.(23-24七年级下·四川达州·期末)在数学活动课上,李老师给出以下题目条件:在四边形中,,点E、F分别是直线上的一点,并且.请同学们在原条件不变的情况下添加条件,开展探究活动.【初步探索】(1)“兴趣”小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学数学课件教学
- 沪教版数学三年级上册《两位数被一位数除》说课稿十篇
- 5年中考3年模拟试卷初中道德与法治七年级下册01第1课时我们的情感世界
- AbMole 氘代化合物的详细讲解
- 建筑环境学总复习
- 冀教版小学音乐二年级上册教案(2000字)
- 环保标准化原材料仓储厂房项目可行性研究报告模板-立项拿地
- (统考版)2023版高考化学一轮复习课时作业40生命中的基础有机物合成有机高分子
- 五金配件储存运输协议
- 动物园建设搅拌车运输协议
- 尾矿库在线监测管理文档
- 部编版六年级上册《习作例文:爸爸的计划》语文教案
- 汉字拼音描红(声母韵母有书写顺序)
- 国有股大宗交易制度问题及完善建议
- 保洁日常工作记录表.doc
- 鱼骨图图参考案例
- 电力二十五项反措细则(完整版)
- 模具零件的材料及热处理资料
- 教学课件PPT土石坝的渗流分析
- 钢结构基础土方开挖及回填施工方案
- 节能旁站监理记录表范本
评论
0/150
提交评论