版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省巴东一中高二数学第一学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面,的法向量分别为,,且,则()A. B.C. D.2.在平面直角坐标系xOy中,双曲线(,)的左、右焦点分别为,,点M是双曲线右支上一点,,且,则双曲线的离心率为()A. B.C. D.3.已知椭圆的两个焦点分别为,若椭圆上不存在点,使得是钝角,则椭圆离心率的取值范围是()A. B.C. D.4.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文6.已知双曲线的焦点为,,其渐近线上横坐标为的点满足,则()A. B.C.2 D.47.已知线段AB的端点B在直线l:y=-x+5上,端点A在圆C1:上运动,线段AB的中点M的轨迹为曲线C2,若曲线C2与圆C1有两个公共点,则点B的横坐标的取值范围是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)8.等轴双曲线渐近线是()A. B.C. D.9.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数到与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列、这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23则该数列的第100项为()A.4862 B.4962C.4852 D.495210.已知对任意实数,有,且时,则时A. B.C. D.11.若方程表示圆,则实数的取值范围为()A. B.C. D.12.如图,若斜边长为的等腰直角(与重合)是水平放置的的直观图,则的面积为()A.2 B.C. D.8二、填空题:本题共4小题,每小题5分,共20分。13.已知函数(1)若时函数有三个互不相同的零点,求实数的取值范围;(2)若对任意的,不等式在上恒成立,求实数的取值范围14.经过点,的直线的倾斜角为___________.15.抛物线的准线方程为_____16.i为虚数单位,复数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若函数与在x=1处的切线平行,求函数在处的切线方程;(2)当时,若恒成立,求实数a的取值范围.18.(12分)已知函数在处有极值,且其图象经过点.(1)求的解析式;(2)求在的最值.19.(12分)已知是等差数列,是各项都为正数的等比数列,,再从①;②;③这三个条件中选择___________,___________两个作为已知.(1)求数列的通项公式;(2)求数列的前项和.20.(12分)已知椭圆()的离心率为,一个焦点为.(1)求椭圆的方程;(2)设为原点,直线()与椭圆交于不同的两点,且与x轴交于点,为线段的中点,点关于轴的对称点为.证明:是等腰直角三角形.21.(12分)已知数列的前项和为,且,(1)求的通项公式;(2)求的最小值22.(10分)(1)已知等轴双曲线的上顶点到一条渐近线的距离为,求此双曲线的方程;(2)已知抛物线的焦点为,设过焦点且倾斜角为的直线交抛物线于,两点,求线段的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题得,解方程即得解.【详解】解:因为,所以所以,所以,所以.故选:D2、A【解析】本题考查双曲线的定义、几何性质及直角三角形的判定即可解决.【详解】因为,,所以在中,边上的中线等于的一半,所以.因为,所以可设,,则,解得,所以,由双曲线的定义得,所以双曲线的离心率故选:A3、C【解析】点P取端轴的一个端点时,使得∠F1PF2是最大角.已知椭圆上不存在点P,使得∠F1PF2是钝角,可得b≥c,利用离心率计算公式即可得出【详解】∵点P取端轴的一个端点时,使得∠F1PF2是最大角已知椭圆上不存在点P,使得∠F1PF2是钝角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故选C【点睛】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).4、B【解析】根据方程表示椭圆,且2,再判断必要不充分条件即可.【详解】解:方程表示椭圆满足,解得,且2所以“”是“方程表示椭圆”的必要不充分条件.故选:B5、C【解析】设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,再根据题意列方程组可解得结果.【详解】依题意,设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,则,解得,所以戊分得(文),己分得(文),故选:C.6、B【解析】由题意可设,则,再由,可得,从而可求出的值【详解】解:双曲线的渐近线方程为,故设,设,则,因为,所以,即,所以,因为,所以,因为,所以,故选:B7、D【解析】设,AB的中点,由中点坐标公式求得,代入圆C1:得点点M的轨迹方程,再根据两圆的位置关系建立不等式,代入,求解即可得点B的横坐标的取值范围.【详解】解:设,AB的中点,则,所以,又因为端点A在圆C1:上运动,所以,即,因为曲线C2与圆C1有两个公共点,所以,又因B在直线l:y=-x+5上,所以,所以,整理得,即,解得,所以点B的横坐标的取值范围是,故选:D.8、A【解析】对等轴双曲线的焦点的位置进行分类讨论,可得出等轴双曲线的渐近线方程.【详解】因为,若双曲线的焦点在轴上,则等轴双曲线的渐近线方程为;若双曲线的焦点在轴上,则等轴双曲线的渐近线方程为.综上所述,等轴双曲线的渐近线方程为.故选:A.9、D【解析】根据题意可得数列2,3,5,8,12,17,23,,满足:,,从而利用累加法即可求出,进一步即可得到的值【详解】2,3,5,8,12,17,23,后项减前项可得1,2,3,4,5,6,所以,所以.所以.故选:D10、B【解析】,所以是奇函数,关于原点对称,是偶函数,关于y轴对称,时则都是增函数,由对称性可知时递增,递减,所以考点:函数奇偶性单调性11、D【解析】将方程化为标准式即可.【详解】方程化为标准式得,则.故选:D.12、C【解析】由斜二测还原图形计算即可求得结果.【详解】在斜二测直观图中,由为等腰直角三角形,,可得,.还原原图形如图:则,则.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、(1)(2)【解析】(1)将函数有三个互不相同的零点转化为有三个互不相等的实数根,令,求导确定单调性求出极值即可求解;(2)求导确定单调性,结合以及得,由得,结合二次函数单调性求出最小值即可求解.【小问1详解】当时,.函数有三个互不相同的零点,即有三个互不相等的实数根令,则,令得或,在和上均减函数,在上为增函数,极小值为,极大值为,的取值范围是;【小问2详解】,且,当或时,;当时,函数的单调递增区间为和,单调递减区间为当时,,又,,又,又在上恒成立,即,即当时,恒成立在上单减,故最小值为,的取值范围是14、【解析】根据两点间斜率公式得到斜率,再根据斜率确定倾斜角大小即可.【详解】根据两点间斜率公式得:,所以直线的倾斜角为:.故答案为:15、【解析】本题利用抛物线的标准方程得出抛物线的准线方程【详解】由抛物线方程可知,抛物线的准线方程为:故答案为【点睛】本题考查抛物线的相关性质,主要考查抛物线的简单性质的应用,考查抛物线的准线的确定,是基础题16、【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简求解即可.【详解】故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出函数的导数,利用切线平行求出a,即可求出切线方程;(2)先把已知条件转化为,令,,利用导数求出的最小值,即可求出实数a的取值范围.【详解】(1),故,而,故,故,解得:,故,故的切线方程是:,即;(2)当时,恒成立等价于,令,.则,令,解得:;令,解得:;所以在上单减,在上单增,所以,所以.即实数a的取值范围为.18、(1)(2),【解析】(1)由与解方程组即可得解;(2)求导后得到函数的单调区间与极值后,比较端点值即可得解.【详解】(1)求导得,处有极值,即,又图象过点,代入可得..(2)由(1)知,令得又,.列表如下:0230+4↘极小值↗1在时,,.【点睛】本题考查了导数的简单应用,属于基础题.19、答案见解析【解析】(1)根据题设条件可得关于基本量的方程组,求解后可得的通项公式.(2)利用公式法可求数列的前项和.【详解】解:选择条件①和条件②(1)设等差数列的公差为,∴解得:,.∴,.(2)设等比数列的公比为,,∴解得,.设数列的前项和为,∴.选择条件①和条件③:(1)设等差数列的公差为,∴解得:,.∴.(2),设等比数列的公比为,.∴,解得,.设数列的前项和为,∴.选择条件②和条件③:(1)设等比数列的公比为,,∴,解得,,.设等差数列的公差为,∴,又,故.∴.(2)设数列的前项和为,由(1)可知.【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题20、(1)(2)证明见解析.【解析】(1)由题知,进而结合求解即可得答案;(2)设点,,进而联立并结合题意得或,进而结合韦达定理得,再的中点为,证明,进而得,,故,综合即可得证明.【小问1详解】解:因为椭圆的离心率为,一个焦点为所以,所以所以椭圆的方程为.【小问2详解】解:设点,则点,所以联立方程得,所以有,解得,因为,故或设,所以设向量,所以,所以,即,设的中点为,则所以,又因为,所以,所以,因为点关于轴的对称点为.所以,所以,所以是等腰直角三角形.21、(1)(2)【解析】(1)由可求得的值,由可求得数列的通项公式;(2)求得,利用二次函数的基本性质可求得的最小值.【小问1详解】解:由题意可得,解得,所以,.当时,,当时,,也满足,故对任意的,.【小问2详解】解:,所以,当或时,取得最小值,且最小值为.22、(1);(2)8.【解析】(1)由等轴双曲线的一条渐近线方程为,再由点到直线距离公式求解即可;(2)求得直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 榻榻米专用座椅相关项目建议书
- 混凝土结构课程设计楼面
- 变电所的设计课程设计
- 网课居家锻炼标语大全
- 电动车务联网课程设计
- 2024年温泉水开发利用项目规划申请报告模范
- 手动打气筒项目评价分析报告
- 2024年心脏起搏器(含体内)项目立项申请报告模范
- 云南省景洪市三校联考2024-2025学年七年级上学期10月期中生物试题
- 沙窝岛中心渔港课程设计
- 双师型教师培养课件
- 第七章隋唐时期的法律制度ppt课件
- 《旅居养老服务指南》
- 14-家具设计表达
- 药品生产企业药物警戒计划
- DB∕T29-156-2021 天津市居住区绿地设计标准
- 消防监督检查要点
- 硅胶出货检验报告
- 国际商法教学案例(英文选编)粉皮书案例中英答案汇总
- 质量控制重点及监理措施
- 新人教版三年级多位数乘一位数课件
评论
0/150
提交评论