版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市人大学附属中学数学高二上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,且,则的最大值为()A. B.C. D.2.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元3.在平面直角坐标系中,已知点,,,,直线AP,BP相交于点P,且它们斜率之积是.当时,的最小值为()A. B.C. D.4.已知点P(5,3,6),直线l过点A(2,3,1),且一个方向向量为,则点P到直线l的距离为()A. B.C. D.5.执行如图所示的算法框图,则输出的结果是()A. B.C. D.6.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.7.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;8.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”9.已知,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件10.若,则下列不等式不能成立是()A. B.C. D.11.我国古代铜钱蕴含了“外圆内方”“天地合一”的思想.现有一铜钱如图,其中圆的半径为r,正方形的边长为,若在圆内随即取点,取自阴影部分的概率是p,则圆周率的值为()A. B.C. D.12.经过两点直线的倾斜角是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.下图是个几何体的展开图,图①是由个边长为的正三角形组成;图②是由四个边长为的正三角形和一个边长为的正方形组成;图③是由个边长为的正三角形组成;图④是由个边长为的正方形组成.若几何体能够穿过直径为的圆,则该几何体的展开图可以是______(填所有正确结论的序号).14.与同一条直线都相交的两条直线的位置关系是________15.命题“x≥1,x2-2x+4≥0”的否定为____________.16.写出一个与椭圆有公共焦点的椭圆方程__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD为正方形,M、N、Q分别为AD、PD、BC的中点(1)证明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值18.(12分)已知函数(1)若在上不单调,求a的范围;(2)试讨论函数的零点个数19.(12分)已知抛物线C的顶点在坐标原点,焦点在x轴上,点在抛物线C上(1)求抛物线C的方程;(2)过抛物线C焦点F的直线l交抛物线于P,Q两点,若求直线l的方程20.(12分)在①;②;③;这三个条件中任选一个,补充在下面的问题中,然后解答补充完整的题.注:若选择多个条件分别解答,则按第一个解答计分.已知,且(只需填序号).(1)求的值;(2)求展开式中的奇数次幂的项的系数之和21.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且是的中点.(1)求证:平面;(2)求二面角的余弦值.22.(10分)已知向量,.(1)计算和;(2)求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由基本不等式直接求解即可得到结果.【详解】由基本不等式知;(当且仅当时取等号),的最大值为.故选:A.2、D【解析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D3、A【解析】设出点坐标,求得、所在直线的斜率,由斜率之积是列式整理即可得到点的轨迹方程,设,根据双曲线的定义,从而求出的最小值;【详解】解:设点坐标为,则直线的斜率;直线的斜率由已知有,化简得点的轨迹方程为又,所以点的轨迹方程为,即点的轨迹为以、为顶点的双曲线的左支(除点),因为,设,由双曲线的定义可知,所以,当且仅当、、三点共线时取得最小值,因为,所以,所以,即的最小值为;故选:A4、B【解析】根据向量和直线l的方向向量的关系即可求出点P到直线l的距离.【详解】由题意,,,,,,到直线的距离为.故选:B.5、B【解析】列举出循环的每一步,利用裂项相消法可求得输出结果.【详解】第一次循环,不成立,,;第二次循环,不成立,,;第三次循环,不成立,,;以此类推,最后一次循环,不成立,,.成立,跳出循环体,输出.故选:B.6、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.7、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B8、A【解析】由,而,故由独立性检验的意义可知选A9、C【解析】根据充要条件的定义进行判断【详解】解:因为函数为增函数,由,所以,故“”是“”的充分条件,由,所以,故“”是“”的必要条件,故“”是“”的充要条件故选:C10、C【解析】利用不等式的性质可判断ABD,利用赋值法即可判断C,如.【详解】解:因为,所以,所以,,,故ABD正确;对于C,若,则,故C错误.故选:C.11、B【解析】根据圆和正方形的面积公式结合几何概型概率公式求解即可.【详解】由可得故选:B12、B【解析】求出直线的斜率后可得倾斜角【详解】经过两点的直线的斜率为,设该直线的倾斜角为,则,又,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与比较大小,即可确定答案.【详解】①由题设,几何体为棱长为的正四面体,该正四面体可放入一个正方体中,且正方体的棱长为,该正四面体的外接球半径为,满足要求;②由题设,几何体为棱长为的正四棱锥,如下图所示:设,连接,则为、的中点,因为四边形是边长为的正方形,则,所以,,所以,,所以,,,所以点为正四棱锥的外接球球心,且该球的半径为,不满足要求;③由题设,几何体为棱长为的正八面体,该正八面体可由两个共底面,且棱长均为的正四棱锥拼接而成,由②可知,该正八面体的外接球半径为,不满足要求;④由题设,几何体为棱长为的正方体,其外接球半径为,不满足要求;故答案为:①.14、平行,相交或者异面【解析】由空间中两直线的位置关系求解即可【详解】由题意与同一条直线都相交的两条直线的位置关系可能是:平行,相交或者异面,故答案为:平行,相交或者异面,15、【解析】根据还有一个量词的命题的否定的方法解答即可.【详解】命题“x≥1,x2-2x+4≥0”的否定为“”.故答案为:.16、(答案不唯一)【解析】根据椭圆的标准方程,以及分析即可【详解】由题可知椭圆的形式应为(,且),可取故答案为:(答案不唯一)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明过程见解析(2)【解析】(1)由线线平行证明线面平行;(2)建立空间直角坐标系,利用空间向量进行求解二面角的余弦值.【小问1详解】因为M,N是DA,PD的中点,所以MN//AP,因为平面PAQ,平面PAQ,所以MN//平面PAQ因为四边形ABCD为正方形,且Q为BC中点,所以MA//CQ,且MA=CQ,所以四边形MAQC为平行四边形,所以CM//AQ,因为平面PAQ,平面PAQ,所以MC//平面PAQ,因为,所以面PAQ//面MNC【小问2详解】因为PD⊥CD,PD⊥AD,AD⊥CD故以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,DP所在直线为z轴建立空间直角坐标系,则,,,设平面NMC的法向量为,则,令得:,所以,平面NDC的法向量为,则,设二面角M-NC-D的大小为,显然为锐角,则18、(1)(2)答案见解析【解析】(1)由:存在使来求得的取值范围.(2)利用分离常数法,结合导数来求得零点个数.【小问1详解】,在上递增,由于在上不单调,所以存使,,所以.【小问2详解】,令,当时,,构造函数,,所以在递减;在递增,当时,;当时,;.由此画出大致图象如下图所示,所以,当时,有个零点,当时,没有零点,当时,有个零点.19、(1)(2)或【解析】(1)把点的坐标代入方程即可;(2)设直线方程,解联立方程组,消未知数,得到一元二次方程,再利用韦达定理和已知条件求斜率.【小问1详解】因为抛物线C的顶点在原点,焦点在x轴上,所以设抛物线方程为又因为点在抛物线C上,所以,解得,所以抛物线的方程为;【小问2详解】抛物线C的焦点为,当直线l的斜率不存在时,,不符合题意;当直线l的斜率存在时,设直线l的方程为,设直线l交抛物线的两点坐标为,,由得,,,,由抛物线得定义可知,所以,解得,即,所以直线l的方程为或20、(1)选①②③,答案均为;(2)66【解析】(1)选①时,利用二项式定理求得的通项公式为,从而得到,求出n的值;选②时,利用二项式系数和的公式求出,解出n的值;选③时,利用赋值法求解,,从而求出n的值;(2)在第一问求出的的前提下进行赋值法求解.【小问1详解】选①,其中,而的通项公式为,当时,,所以,解得:;选②,由于,所以,解得:;选③,令中得:,再令得:,解得:;【小问2详解】由(1)知:n=7,所以,令得:,令得:,两式相减得:,所以,故展开式中的奇数次幂的项的系数和为66.21、(1)证明见解析(2)【解析】(1)取的中点F,连接EF,,由四边形是平行四边形即可求解;(2)采用建系法,以为轴,为轴,垂直底面方向为轴,求出对应点坐标,结合二面角夹角余弦公式即可求解.【小问1详解】取的中点F,连接EF,,∵,∴,且,∴,∴四边形是平行四边形,∴,又平面,平面,∴平面;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车间安全培训试题及答案全套
- 男衬衫工艺课程设计
- 碳酸二乙酯相关行业投资规划报告
- 2024年公关礼仪服务项目规划申请报告模范
- 家具或地板用抛光剂相关项目建议书
- eda课程设计汽车尾灯
- 2024年聚氧乙烯醚项目申请报告模范
- 2024年汽车清洁剂项目规划申请报告模范
- 2024年拔罐器项目规划申请报告模范
- 社交软件课程设计
- Unit 2 Section B(1a-Project)课件人教版2024新教材七年级上册英语
- 幼儿园故事绘本《卖火柴的小女孩儿》课件
- 劳动创造美好生活教案完整版精
- 混凝土圆管涵计算书
- 矿产资源储量报告及评审中的若干问题
- 一年级数学《整理房间》听课心得体会
- 学校迎接督导评估检查工作方案[推荐五篇]_1
- 实用酒店水单模板.doc
- 水利工程施工机械台时费定额(完整版)
- 临时用电审批表
- 多人共同借款协议书-
评论
0/150
提交评论