版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省莆田市名校2025届高三数学第一学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,值域为R且为奇函数的是()A. B. C. D.2.已知满足,,,则在上的投影为()A. B. C. D.23.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为()A.3 B.2 C.1 D.04.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关5.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是()A.年该工厂的棉签产量最少B.这三年中每年抽纸的产量相差不明显C.三年累计下来产量最多的是口罩D.口罩的产量逐年增加6.在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则()A.5 B. C.4 D.167.△ABC中,AB=3,,AC=4,则△ABC的面积是()A. B. C.3 D.8.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是()A. B. C. D.9.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)10.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()A. B. C.3 D.511.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于()A. B. C. D.12.已知集合的所有三个元素的子集记为.记为集合中的最大元素,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_____14.已知双曲线的渐近线与准线的一个交点坐标为,则双曲线的焦距为______.15.曲线f(x)=(x2+x)lnx在点(1,f(1))处的切线方程为____.16.已知数列是各项均为正数的等比数列,若,则的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.18.(12分)已知数列满足,,其前n项和为.(1)通过计算,,,猜想并证明数列的通项公式;(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.19.(12分)已知中,角所对边的长分别为,且(1)求角的大小;(2)求的值.20.(12分)在中,角,,的对边分别为,,,已知.(1)若,,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由.21.(12分)一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450米,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元(1)求发酵池边长的范围;(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.22.(10分)[选修45:不等式选讲]已知都是正实数,且,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
依次判断函数的值域和奇偶性得到答案.【详解】A.,值域为,非奇非偶函数,排除;B.,值域为,奇函数,排除;C.,值域为,奇函数,满足;D.,值域为,非奇非偶函数,排除;故选:.【点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.2、A【解析】
根据向量投影的定义,即可求解.【详解】在上的投影为.故选:A【点睛】本题考查向量的投影,属于基础题.3、C【解析】
根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.故选:.【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.4、B【解析】
根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.5、C【解析】
根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.【详解】由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.故选:C.【点睛】本题考查堆积图的应用,考查数据处理能力,属于基础题.6、C【解析】
根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.7、A【解析】
由余弦定理求出角,再由三角形面积公式计算即可.【详解】由余弦定理得:,又,所以得,故△ABC的面积.故选:A【点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.8、C【解析】
求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.【详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.9、B【解析】
根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)=f(x),得f(x)是周期函数且周期为2,先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,,所以,选项A错误;选项B,因为,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确;选项C,,所以,即,选项C错误;选项D,,选项D错误.故选:B.【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.10、C【解析】
由,再运用三点共线时和最小,即可求解.【详解】.故选:C【点睛】本题考查抛物线的定义,合理转化是本题的关键,注意抛物线的性质的灵活运用,属于中档题.11、D【解析】
这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.12、B【解析】
分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以.在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以.故选:.【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率.【详解】解:双曲线的左右焦点分别关于两条渐近线的对称点重合,一条渐近线的斜率为1,即,,,故答案为:.【点睛】本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题.14、1【解析】
由双曲线的渐近线,以及求得的值即可得答案.【详解】由于双曲线的渐近线与准线的一个交点坐标为,所以,即①,把代入,得,即②又③联立①②③,得.所以.故答案是:1.【点睛】本题考查双曲线的性质,注意题目“双曲线的渐近线与准线的一个交点坐标为”这一条件的运用,另外注意题目中要求的焦距即,容易只计算到,就得到结论.15、【解析】
求函数的导数,利用导数的几何意义即可求出切线方程.【详解】解:∵,
∴,
则,
又,即切点坐标为(1,0),
则函数在点(1,f(1))处的切线方程为,
即,
故答案为:.【点睛】本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.16、40【解析】
设等比数列的公比为,根据,可得,因为,根据均值不等式,即可求得答案.【详解】设等比数列的公比为,,,等比数列的各项为正数,,,当且仅当,即时,取得最小值.故答案为:.【点睛】本题主要考查了求数列值的最值问题,解题关键是掌握等比数列通项公式和灵活使用均值不等式,考查了分析能力和计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】
(1)依题意,得,,由此能求出椭圆C的方程.(2)点与点关于轴对称,设,,设,由于点在椭圆C上,故,由,知,由此能求出圆T的方程.(3)设,则直线MP的方程为:,令,得,同理:,由此能证明为定值.【详解】(1)依题意,得,,,故椭圆C的方程为.(2)点与点关于轴对称,设,,设,由于点在椭圆C上,所以,由,则,.由于,故当时,的最小值为,所以,故,又点在圆T上,代入圆的方程得到.故圆T的方程为:(3)设,则直线MP的方程为:,令,得,同理:.故又点与点在椭圆上,故,代入上式得:,所以【点睛】本题考查了椭圆的几何性质、圆的轨迹方程、直线与椭圆的位置关系中定值问题,考查了学生的计算能力,属于中档题.18、(1),证明见解析;(2)【解析】
(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围.【详解】(1)数列满足,,其前项和为.所以,,则,,,所以猜想得:.证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列.所以,整理得.(2)数列满足,,所以,则,所以.则,所以,所以,整理得,由于,所以,即.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠乘法的应用,函数的单调性在数列中的应用,基本不等式的应用,主要考察学生的运算能力和转换能力,属于中档题型.19、(1);(2).【解析】
(1)正弦定理的边角转换,以及两角和的正弦公式展开,特殊角的余弦值即可求出答案;(2)构造齐次式,利用正弦定理的边角转换,得到,结合余弦定理得到【详解】解:(1)由已知,得又∵∴∴,因为得∵∴.(2)∵又由余弦定理,得∴【点睛】1.考查学生对正余弦定理的综合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机器马达和引擎的气压控制器项目可行性实施报告
- 码头工程课程设计
- 安全标准化安全培训试题(预热题)
- 公司管理人员安全培训试题附答案【典型题】
- 手机用头戴式耳麦相关项目建议书
- 企业员工安全培训试题含完整答案(考点梳理)
- 公司三级安全培训试题附参考答案【能力提升】
- 管理与控制课程设计计算
- 车间员工安全培训试题及参考答案【研优卷】
- 厂里职工安全培训试题参考答案
- BIM技术在建筑行业的应用与优势PPT
- 民事起诉状(食品安全)律师拟定版本
- 管路沿程阻力测定实验报告
- 幼小衔接视角下的语言教学的研究
- 城管占道挖掘施工方案
- 钢结构施工方案重难点及解决措施
- 房屋租赁交接家私清单
- 黄金分割(省一等奖)
- 山东专升本计算机-电子表格系统-Excel-2010课件(新版考试大纲)
- 《电子信息工程专业导论》复习备考核心题库(100多题)
- 青岛五四学制版四年级数学下册《我能长多高》教案及教学反思
评论
0/150
提交评论