2025届河北衡中同卷高二数学第一学期期末预测试题含解析_第1页
2025届河北衡中同卷高二数学第一学期期末预测试题含解析_第2页
2025届河北衡中同卷高二数学第一学期期末预测试题含解析_第3页
2025届河北衡中同卷高二数学第一学期期末预测试题含解析_第4页
2025届河北衡中同卷高二数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北衡中同卷高二数学第一学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列数列中成等差数列的是()A. B.C. D.2.在正方体中,下列几种说法不正确的是A. B.B1C与BD所成的角为60°C.二面角的平面角为 D.与平面ABCD所成的角为3.已知直线l和两个不同的平面,,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知双曲线的左右焦点分别为、,过作的一条渐近线的垂线,垂足为,若的面积为,则的渐近线方程为A. B.C. D.5.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是()A.椭圆 B.双曲线C.抛物线 D.双曲线的一支6.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵中,M是的中点,,,,若,则()A. B.C. D.7.在中,已知角A,B,C所对边为a,b,c,,,,则()A. B.C. D.18.不等式解集为()A. B.C. D.9.由下面的条件一定能得出为锐角三角形的是()A. B.C. D.10.设,,,则,,大小关系是A. B.C. D.11.已知双曲线,则双曲线的离心率为()A. B.C. D.12.已知点,,则经过点且经过线段AB的中点的直线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列是等差数列,,公差,为其前n项和,满足,则当取得最大值时,______14.若函数在区间上的最大值是,则__________15.设是数列的前项和,且,则_____________.16.若p:存在,使是真命题,则实数a的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列中,,是与的等差中项,(1)求证:数列是等差数列(2)令,求数列的前项的和18.(12分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.19.(12分)已知数列的前n项和为,,,其中.(1)记,求证:是等比数列;(2)设,数列的前n项和为,求证:.20.(12分)已知直线方程为(1)若直线的倾斜角为,求的值;(2)若直线分别与轴、轴的负半轴交于、两点,为坐标原点,求面积的最小值及此时直线的方程21.(12分)如图所示,、分别为椭圆的左、右焦点,A,B为两个顶点,已知椭圆C上的点到、两点的距离之和为4.(1)求a的值和椭圆C的方程;(2)过椭圆C的焦点作AB的平行线交椭圆于P,Q,求的面积22.(10分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用等差数列定义,逐一验证各个选项即可判断作答.【详解】对于A,,A不是等差数列;对于B,,B不是等差数列;对于C,,C是等差数列;对于D,,D不是等差数列.故选:C2、D【解析】在正方体中,利用线面关系逐一判断即可.【详解】解:对于A,连接AC,则AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正确;对于B,∵B1C∥D,即B1C与BD所成的角为∠DB,连接△DB为等边三角形,∴B1C与BD所成的角为60°,故B正确;对于C,∵BC⊥平面A1ABB1,A1B⊂平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B⊂平面A1BC,AB⊂平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正确;对于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1与平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D错误故选D【点睛】本题考查了线面的空间位置关系及空间角,做出图形分析是关键,考查推理能力与空间想象能力3、D【解析】根据直线、平面的位置关系,应用定义法判断两个条件之间的充分、必要性.【详解】当,时,直线l可与平行、相交,故不一定成立,即充分性不成立;当,时,直线l可在平面内,故不一定成立,即必要性不成立.故选:D.4、D【解析】求得,根据的面积列方程,由此求得,进而求得双曲线的渐近线方程.【详解】依题意,双曲线的一条渐近线为,则,所以,所以,所以.所以双曲线渐近线方程为.故选:D【点睛】本小题主要考查双曲线渐近线的有关计算,属于中档题.5、A【解析】依据定义法去求动圆的圆心的轨迹即可解决.【详解】设动圆的半径为r,又圆半径为1,圆半径为8,则,,可得,又则动圆的圆心的轨迹是以为焦点长轴长为9的椭圆.故选:A6、C【解析】建立坐标系,坐标表示向量,求出点坐标,进而求出结果.【详解】以为坐标原点,,,的方向分别为x,y,z轴的正方向建立空间直角坐标系.不妨令,则,,,,,.因为,所以,则,,,,则解得,,,故.故选:C7、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.8、C【解析】化简一元二次不等式的标准形式并求出解集即可.【详解】不等式整理得,解得或,则不等式解集为.故选:.9、D【解析】对于A,两边平方得,由得,即为钝角;对于B,由正弦定理求出,进而求出,可得结果;对于C,根据平方关系将余弦化为正弦,用正弦定理可将角转化为边,进而可得的值,从而作出判断;对于D,由可得,推出,,,故可知三个内角均为锐角【详解】解:对于A,由,两边平方整理得,,因为,所以,所以,所以,所以为钝角三角形,故A不正确;对于B,由,得,所以,因为,所以,所以或,所以或,所以为直角三角形或钝角三角形,故B不正确;对于C,因为,所以,即,由正弦定理得,由余弦定理得,因为,所以,故三角形为钝角三角形,C不正确;对于D,由可得,因为中最多只有一个钝角,所以,,中最多只有一个为负数,所以,,,所以中三个内角都为锐角,所以为锐角三角形,故D正确;故选:D10、A【解析】构造函数,根据的单调性可得(3),从而得到,,的大小关系【详解】考查函数,则,在上单调递增,,(3),即,,故选:【点睛】本题考查了利用函数的单调性比较大小,考查了构造法和转化思想,属基础题11、D【解析】由双曲线的方程及双曲线的离心率即可求解.【详解】解:因为双曲线,所以,所以双曲线的离心率,故选:D.12、C【解析】求AB的中点坐标,根据直线所过的两点坐标求直线方程即可.【详解】由已知,AB中点为,又,∴所求直线斜率为,故直线方程为,即故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、9或10【解析】等差数列通项公式的使用.【详解】数列是等差数列,且,得,得,则有,又因为,公差,所以或10时,取得最大值故答案为:9或1014、0【解析】由函数,又由,则,根据二次函数的性质,即可求解函数的最大值,得到答案.【详解】由函数,因为,所以,当时,则,所以.【点睛】本题主要考查了余弦函数的性质,以及二次函数的图象与性质,其中解答中根据余弦函数,转化为关于的二次函数,利用二次函数的图象与性质是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.15、【解析】根据题意可知,再利用裂项相消法,即可求出结果.【详解】因为,所以.故答案为:.16、【解析】将问题分离参数得到存在,使成立,可得结论.【详解】存在,使,即存在,使,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)求得,利用等差数列的定义可证得结论成立;(2)求出,可计算得出,利用并项求和法可求得数列的前项的和.小问1详解】解:由题意知是与的等差中项,可得,可得,则,可得,所以,,又由,可得,所以数列是首项和公差均为的等差数列.【小问2详解】解:由(1)可得:,,对任意的,,因此,.18、(1)(2)【解析】由已知式子变形可得是以为首项,为公比的等比数列,由等比数列的通项公式易得利用错位相减法,得到数列的前项和为解析:(1)由,()知,又,∴是以为首项,为公比的等比数列,∴,∴(2),,两式相减得,∴点睛:本题主要考查数列的证明,错位相减法等基础知识,考查学生的分析问题解决问题的能力,转化能力和计算能力.第一问中将已知的递推公式进行变形,转化为的形式来证明,还可以根据等比数列的定义来证明;第二问,将第一问中得到的结论代入,先得到的表达式,利用错位相减法,即可得到数列的前项和为19、(1)证明见解析;(2)证明见解析.【解析】(1)应用的关系,结合构造法可得,根据已知条件及等比数列的定义即可证结论.(2)由(1)得,再应用错位相减法求,即可证结论.【小问1详解】证明:对任意的,,,时,,解得,时,因为,,两式相减可得:,即有,∴,又,则,因为,,所以,对任意的,,所以,因此,是首项和公比均为3的等比数列【小问2详解】由(1)得:,则,,,两式相减得:,化简可得:,又,∴.20、(1);(2)面积的最小值为,此时直线的方程为.【解析】(1)由直线的斜率和倾斜角的关系可求得的值;(2)求出点、的坐标,根据已知条件求出的取值范围,求出的面积关于的表达式,利用基本不等式可求得面积的最小值,利用等号成立的条件可求得的值,即可得出直线的方程.【小问1详解】解:由题意可得.【小问2详解】解:在直线的方程中,令可得,即点,令可得,即点,由已知可得,解得,所以,,当且仅当时,等号成立,此时直线的方程为,即.21、(1)a=2,(2)【解析】(1)由题意可得a=2,,求出,从而可求得椭圆方程,(2)由题意可求出的坐标,则可求出直线PQ的方程,然后将直线方程与椭圆方程联立,消去,利用根与系数的关系,求出的值,从而可求出的值【小问1详解】由椭圆定义可得2a=4,所以a=2,又因点在椭圆C上,所以,解得:,所以a的值为2,椭圆C的方程为【小问2详解】由椭圆的方程可得,,,所以,所以直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论