版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、解答题1.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a)×90%-(a+a+a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.已知,.(1)求.(2)若,,且,求的值.解析:(1);(2)114或99.【分析】(1)把,代入计算即可;(2)根据,,且求出x和y的值,然后代入(1)中化简的结果计算即可.【详解】解:(1);(2)由题意可知:,,∴或1,,由于,∴,或,.当,时,.当,时,.所以,的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.3.如图,将面积为的小正方形和面积为的大正方形放在同一水平面上()(1)用a、b表示阴影部分的面积;(2)计算当,时,阴影部分的面积.解析:(1);(2)【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将,代入求值即可.【详解】(1),;(2)当,时,原式.【点睛】此题考察列式计算,根据图形边长正确列式表示图形的面积即可.4.某商店出售一种商品,其原价为元,现有如下两种调价方案:一种是先提价,在此基础上又降价;另一种是先降价,在此基础上又提价.(1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价,在此基础上又降价;另一种是先降价,在此基础上又提价,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m,再降价20%后价钱为96%m;先降价20%为80%m,再提价20%后价钱为96%m,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价价钱为,再降价后价钱为;方案二:先降价价钱为,再提价后价钱为,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价价钱为,再降价后价钱为;方案二:先降价价钱为,再提价后价钱为,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大.5.求多项式的值,其中,.解析:,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式,当,时,原式.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.6.已知在数轴上的位置如图所示,解答下列问题.(1)化简:;(2)若a的绝对值的相反数是的倒数是它本身,,求的值.解析:(1);(2)-9【分析】(1)由数轴上的位置,先判断,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a、b、c的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:,∴,∴原式.(2)由题意,∵若a的绝对值的相反数是的倒数是它本身,,∴,∴.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断,从而进行解题.7.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19=;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=;(3)请用上述计算103+105+107+…+2015+2017的值.解析:(1)102;(2);(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=;第2个图案所代表的算式为:1+3=4=;第3个图案所代表的算式为:1+3+5=9=;…依次类推:第n个图案所代表的算式为:1+3+5+…+(2n-1)=;1+3+5+…+19的个数为:,∴1+3+5+…+19=;故答案为:;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:,∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=,故答案为:;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=-=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.8.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a,以15%的速度增长,表示在m的基础上增长a的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.9.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n次后,折痕有条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为条,第2次对折后的折痕条数为条,第3次对折后的折痕条数为条,第4次对折后的折痕条数为条,归纳类推得:第n次对折后的折痕条数为条,因为,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n次后的折痕条数为条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.10.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式的值.结果同学告诉他:的值是墨迹遮盖住的最大整数,的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:,【分析】先把原式进行化简,得到最简代数式,结合的值是墨迹遮盖住的最大整数,的值是墨迹遮盖住的最小整数,得到x、y的值,然后代入计算,即可得到答案.【详解】解:===;∵被盖住的数,∴的值是墨迹遮盖住的最大整数,∴,∵的值是墨迹遮盖住的最小整数,∴,∴原式=.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x、y的值,以及掌握整式的混合运算.11.数学课上,老师出示了这样一道题目:“当时,求多项式的值”.解完这道题后,张恒同学指出:“是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论取任何值,多项式的值都不变,求系数、的值”.请你解决这个问题.解析:(1)见解析;(2),.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论取任何值,多项式值不变”进一步求解即可.【详解】(1)==,∴该多项式的值与、的取值无关,∴是多余的条件.(2)==∵无论取任何值,多项式值不变,∴,,∴,.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.12.已知多项式(1)把这个多项式按的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1);(2)该多项式的次数为4,二次项是,常数项是.【分析】(1)按照x的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式.(2)∵中次数最高的项是-5x4,∴该多项式的次数为4,它的二次项是,常数项是.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.13.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.解析:(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.14.给定一列分式:,,,,…(其中).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得.(2)第7个分式为,第8个分式为.【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1),,,……∴任意一个分式除以前面一个分式,都得.(2)∵由式子…,发现分母上是y1,y2,y3,y4,……所以第7个式子分母上是y7,第8个分母上是y8;分子上是x3,x5,x7,x9,……所以第7个式子分子上是x15,第8个分子上是x17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为,第8个分式为.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.15.观察下列单项式:﹣x,2x2,﹣3x3,…,﹣9x9,10x10,…从中我们可以发现:(1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n个单项式是.解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3).【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.16.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B”看成“2A+B”,算得结果为4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.解析:(1)﹣2a2b+ab2+2abc;(2)8a2b﹣5ab2;(3)对,0.【分析】(1)根据B=4a2b﹣3ab2+4abc-2A列出关系式,去括号合并即可得到B;(2)把A与B代入2A-B中,去括号合并即可得到结果;(3)把a与b的值代入计算即可求出值.【详解】解:(1)∵2A+B=4a2b﹣3ab2+4abc,∴B=4a2b﹣3ab2+4abc-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc;(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2;(3)对,由(2)化简的结果可知与c无关,将a=,b=代入,得8a2b-5ab2=8××-5××=0.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.17.已知a+b=2,ab=2,求的值.解析:4【分析】根据因式分解,首先将整式提取公因式,在采用完全平方公式合,在代入计算即可.【详解】解:原式=a3b+a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,∵a+b=2,ab=2,∴原式=×2×4=4.【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.18.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.19.观察下列单项式:,,,,…,,…写出第个单项式,为了解这个问题,特提供下面的解题思路.这组单项式的系数的符号,绝对值规律是什么?这组单项式的次数的规律是什么?根据上面的归纳,你可以猜想出第个单项式是什么?请你根据猜想,请写出第个,第个单项式.解析:(或:负号正号依次出现;),(或:从开始的连续奇数);从开始的连续自然数;第个单项式是:;个单项式是;第个单项式是.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】数字为,,,,,,…,为奇数且奇次项为负数,可得规律:;故单项式的系数的符号是:(或:负号正号依次出现;),绝对值规律是:(或:从开始的连续奇数);字母因数为:,,,,,,…,可得规律:,这组单项式的次数的规律是从开始的连续自然数.第个单项式是:.把、直接代入解析式即可得到:第个单项式是;第个单项式是.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.20.若1+2+3+…+n=m,求(abn)•(a2bn﹣1)…(an﹣1b2)•(anb)的值.解析:ambm【解析】试题分析:根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质,(abn)•(a2bn﹣1)…(an﹣1b2)•(anb)=a1+2+…nbn+n﹣1+…+1=ambm.解:∵1+2+3+…+n=m,∴(abn)•(a2bn﹣1)…(an﹣1b2)•(anb),=a1+2+…nbn+n﹣1+…+1,=ambm考点:单项式乘单项式;同底数幂的乘法.点评:本题考查单项式的乘法法则和同底数幂的乘法的性质.21.已知,求的值.解析:-24.【分析】首先根据绝对值的非负性求出x,y,然后代入代数式求值.【详解】解:∵,∴x+2=0,y-3=0,∴x=-2,y=3,∴.【点睛】本题考查了代数式求值,利用非负数的和为零得出x、y的值是解题关键.22.已知,且,求代数式.解析:【分析】将A代入A-B=x3+1中计算即可求出B.【详解】解:∵A-B=x3+1,且A=-2x3+2x+3,∴B=A-(x3+1)=-2x3+2x+3-x3-1=-3x3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.23.先化简,再求值:,其中,.解析:【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.试题原式当时,原式24.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应的等式.解析:(1)1+3+5+7=42;1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.25.设A=2x2+x,B=kx2-(3x2-x+1).(1)当x=-1时,求A的值;(2)小明认为不论k取何值,A-B的值都无法确定.小红认为k可以找到适当的数,使代数式A-B的值是常数.你认为谁的说法正确?请说明理由.解析:(1)A=1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A进行计算即可得;(2)先计算出A-B,根据结题即可得.试题(1)当x=-1时,A=2x2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x2+x)-[kx2-(3x2-x+1)]=(5-k)x2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.26.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A表示数-3,将A点向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离为.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离为.(3)如果点A表示数,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是,A,B两点间的距离是.(4)一般地,如果A点表示数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?解析:(1)4,7;(2)1,2;(3)-92,88;(4)m+n-p,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A表示数-3,∴将A点向右移动7个单位长度,那么终点B表示的数是-3+7=4,A,B两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是3-7+5=1,A,B两点间的距离为3-1=2,故答案为:1,2;(3)∵点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是-4+168-256=-92,A,B两点间的距离是-4-(-92)=88,故答案为:-92,88;(4)∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动p个单位长度,那么点B表示的数为m+n-p,A,B两点间的距离为|m-(m+n-p)|=|n-p|.故答案为:m+n-p,|n-p|.【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/TR 13086-4:2024 EN Gas cylinders - Guidance for design of composite cylinders - Part 4: Cyclic fatigue of fibres and liners
- 《LC基本电路教程》课件
- 三年级语文上册第三单元快了读书吧 安徒生童话 整本书阅读推进课公开课一等奖创新教学设计
- 2024年环氧涂料项目投资申请报告代可行性研究报告
- 腹中胎儿的日常护理
- 年产xx包塑镀锌丝项目可行性研究报告(创业计划)
- 年产xx及全球节能建材项目可行性研究报告(投资方案)
- 年产xx亲水箔项目可行性研究报告(投资方案)
- 年产xxx无醛地板项目可行性研究报告(项目建议书)
- 尊师重道主题活动
- 《乌鲁木齐市国土空间总体规划(2021-2035年)》
- 无人机应用技术专业申报表
- 《护理学基础》《健康评估》临床见习手册
- 泸州老窖“浓香文酿杯”企业文化知识竞赛考试题库大全-中(判断题)
- 2024年湖北恩施州巴东县机关事业单位选调46人历年重点基础提升难、易点模拟试题(共500题)附带答案详解
- 大班劳动教育课教案反思总结(3篇模板)
- DB36- 1100-2019 稀土冶炼加工企业单位产品能源消耗限额
- 医院感染风险评估记录
- 肿瘤化疗导致的中性粒细胞减少诊治中国专家共识(2023版)解读
- 线下业务分期方案
- 三菱电机与大金的比较
评论
0/150
提交评论