内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题【含答案】_第1页
内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题【含答案】_第2页
内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题【含答案】_第3页
内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题【含答案】_第4页
内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页内蒙古伊金霍洛旗2025届九年级数学第一学期开学达标检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是(

)A.矩形

B.菱形

C.矩形或菱形

D.正方形2、(4分)已知四边形ABCD的对角线AC、BD相交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是()A.,B.,C.,D.,3、(4分)下列各式:,,,,,,其中分式有()A.2个B.3个C.4个D.5个4、(4分)学校测量了全校800名男生的身高,并进行了分组,已知身高在1.70~1.75(单位:m)这一组的频率为0.25,则该组共有男生()A.100名 B.200名 C.250名 D.400名5、(4分)某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲908395乙989095丙808890A.甲 B.乙丙 C.甲乙 D.甲丙6、(4分)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是67、(4分)下图是外周边缘为正八边形的木花窗挂件,则这个八边形的每个内角为()A. B. C. D.8、(4分)如图,在中,,,平分交于点,于点,下列结论:①;②;③;④点在线段的垂直平分线上,其中正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)对下列现象中蕴含的数学原理阐述正确的是_____(填序号)①如图(1),剪两张对边平行的纸条,随意交叉叠放在一起,重合的部分构成一个平行四边形.其依据是两组对边分别平行的四边形是平行四边形.②如图(2),工人师傅在做矩形门窗时,不仅测量出两组对边的长度是否相等,还要测量出两条条对角线的长度相等,以确保图形是矩形.其依据是对角线相等的四边形是矩形.③如图(3),将两张等宽的纸条放在一起,重合部分构成的四边形ABCD一定是菱形.其依据是一组邻边相等的平行四边形是菱形.④如图(4),把一张长方形纸片按如图方式折一下,就可以裁出正方形.其依据是一组邻边相等的矩形是正方形.10、(4分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于___________(填普查或抽样调查)11、(4分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”,若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程x2+3x+m=0的解为_____.12、(4分)如图,正方形中,,点在边上,且.将沿对折至,延长交边于点.连结、.下列结论:①;②;③是正三角形;④的面积为1.其中正确的是______(填所有正确答案的序号).13、(4分)某校对初一全体学生进行一次视力普查,得到如下统计表,视力在这个范围的频率为__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在中,E点为AC的中点,且有,,,求DE的长.15、(8分)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1)求证:△BCE≌△DCF.(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8-4,求正方形ABCD的面积?16、(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,在一次购物中,张华和李红都想从“微信”、“支付宝”、“银行卡”、“现金”四种支付方式中选一种方式进行支付.(1)张华用“微信”支付的概率是______.(2)请用画树状图或列表法求出两人恰好选择同一种支付方式的概率.(其中“微信”、“支付宝”、“银行卡”、“现金”分别用字母“A”“B”“C”“D”代替)17、(10分)(1)解方程:.(2)先化简,再求值:,其中.18、(10分)如图,在平面直角坐标系中,矩形的顶点、在坐标轴上,点的坐标为点从点出发,在折线段上以每秒3个单位长度向终点匀速运动,点从点出发,在折线段上以每秒4个单位长度向终点匀速运动.两点同时出发,当其中一个点到达终点时,另一个点也停止运动,连接.设两点的运动时间为,线段的长度的平方为,即(单位长度2).(1)当点运动到点时,__________,当点运动到点时,__________;(2)求关于的函数解析式,并直接写出自变量的取值范围.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若,则xy的值等于_______.20、(4分)如图,正方形的边长是,的平分线交于点,若点分别是和上的动点,则的最小值是_______.21、(4分)已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为________.22、(4分)已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.23、(4分)小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.二、解答题(本大题共3个小题,共30分)24、(8分)如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形是一个特殊的四边形.请判断这个特殊的四边形应该叫做什么,并证明你的结论.25、(10分)如图,直线y=x+b分别交x轴、y轴于点A、C,点P是直线AC与双曲线y=在第一象限内的交点,PB⊥x轴,垂足为点B,且OB=2,PB=1.(1)求反比例函数的解析式;(2)求△APB的面积;(3)求在第一象限内,当x取何值时一次函数的值小于反比例函数的值?26、(12分)已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.(1)求证:四边形ABCD是矩形;(2)若AB=4,AD=3,求四边形BCED的周长.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据正方形、平行四边形、菱形和矩形的定义或性质逐个进行分析,即可得出答案.【详解】解:正方形是特殊的矩形,即是邻边相等的矩形,

也是特殊的菱形,即有是一个角为直角的菱形;

正方形、矩形和菱形都是特殊的平行四边形,

故图中阴影部分表示的图形是正方形.

故选:D.本题考查学生对正方形、平行四边形、菱形和矩形的包含关系的理解和掌握,解题的关键是熟练掌握这四种图形的性质.2、C【解析】

根据平行四边形的判定定理分别进行分析即可.【详解】A、∵∠ADB=∠CBD,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ADB=∠CBD,∴AD∥BC,∵∠DAB=∠BCD,∴∠BAD+∠ABC=∠ADC+∠BCD=180°,∴∠ABC=∠ADC,∴四边形ABCD是平行四边形,故此选项不符合题意;C、∠DAB=∠BCD,AB=CD不能判定四边形ABCD是平行四边形,故此选项符合题意;D、∵∠ABD=∠CDB,∠AOB=∠COD,OA=OC,∴△AOB≌△COD(AAS),∴OB=OC,∴四边形ABCD为平行四边形,故此选项不合题意;故选:C.此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.3、B.【解析】试题分析:由分式的定义知:,,是分式,故选B.考点:分式的定义.4、B【解析】

根据频数=总数×频率,直接代值计算即可.【详解】解:根据题意,得

该组共有男生为:800×0.25=200(人).

故选:B.此题考查频率、频数的关系:频率=。能够灵活运用公式是解题的关键.5、C【解析】

利用平均数的定义分别进行计算成绩,然后判断谁优秀.【详解】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,

乙的总评成绩=98×50%+90×20%+95×30%=95.5,

丙的总评成绩=80×50%+88×20%+90×30%=84.6,

∴甲乙的学期总评成绩是优秀.

故选:C.本题考查加权平均数,掌握加权成绩等于各项成绩乘以不同的权重的和是解题的关键.6、D【解析】

根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,故选D.本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.7、D【解析】

根据多边形的内角和公式,列式计算即可得解.【详解】解:这个正八边形每个内角的度数=×(8-2)×180°=135°.故选:D本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.8、A【解析】

首先求出∠C=30°,∠ABC=60°,再根据角平分线的定义,直角三角形30°角的性质,线段的垂直平分线的定义一一判断即可.【详解】∵在△ABC中,∠BAC=90°,∠ABC=2∠C,∴∠C=30°,∠ABC=60°,∵BE平分∠ABC,∴∠ABE=∠EBC=30°,∴∠EBC=∠C,∴EB=EC,∴AC-BE=AC-EC=AE,故①正确,∵EB=EC,∴点E在线段BC的垂直平分线上,故④正确,∵AD⊥BE,∴∠BAD=60°,∵∠BAE=90°,∴∠EAD=30°,∴∠EAD=∠C,故②正确,∵∠ABD=30°,∠ADB=90°,∴AB=2AD,∵∠BAC=90°,∠C=30°,∴BC=2AB=4AD,故③正确,故选A.本题考查角平分线的性质,线段的垂直平分线的定义,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识.二、填空题(本大题共5个小题,每小题4分,共20分)9、①③④【解析】

①平行四边形的判定定理:两组对边分别平行的四边形是平行四边形;②矩形的判定定理:对角线相等的平行四边形是矩形;③首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则重叠部分为菱形;④根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.【详解】解:①由题意得:AB∥CD,AD∥BC,∵两组对边分别平行,∴四边形ABCD是平行四边形,故正确;②∵两组对边的长度相等,∴四边形是平行四边形,∵对角线相等,∴此平行四边形是矩形,故错误;③∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作AB,BC边上的高为DE,DF.如图所示:则DE=DF(两纸条相同,纸条宽度相同);∵平行四边形ABCD的面积=AB×DE=BC×DF,∴AB=BC.∴平行四边形ABCD为菱形(一组邻边相等的平行四边形是菱形),故正确;④根据折叠原理,对折后可得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片,故正确.故答案为①③④.本题考查了平行四边形的判定、矩形的判定、菱形的判定以及正方形的判定,熟练掌握判定定理是解题的关键.10、抽样调查【解析】

根据普查和抽样调查的定义,显然此题属于抽样调查.【详解】由于只是取了一点品尝,所以应该是抽样调查.

故答案为:抽样调查.此题考查抽样调查和全面调查,解题关键在于掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.11、x1=﹣1,x1=﹣1.【解析】

利用题中的新定义求出m的值,代入一元二次方程,运用因式分解法解方程,即可求出解.【详解】解:由“关联数”定义得一次函数为y=x+m﹣1,又∵此一次函数为正比例函数,∴m﹣1=0,解得:m=1,∴关于x的方程为x1+3x+1=0,因式分解得:(x+1)(x+1)=0,∴x+1=0或x+1=0,∴x1=﹣1,x1=﹣1;故答案为x1=﹣1,x1=﹣1.本题考查新定义“关联数”、一元二次方程的解法以及一次函数的定义,弄清题中的新定义是解本题的关键.12、①②④【解析】

①根据折叠的性质可以得到∠B=∠AFG=1°,AB=AF,AG=AG,根据HL定理即可证明两三角形全等;②不妨设BG=FG=x,(x>0),则CG=30-x,EG=10+x,在Rt△CEG中,利用勾股定理即可列方程求得;③利用②得出的结果,结合折叠的性质求得答案即可;④根据三角形的面积公式可得:S△FGC=S△EGC,即可求解.【详解】解:如图:在正方形ABCD中,AD=AB,∠D=∠B=∠C=1°,又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G∴∠AFG=∠AFE=∠D=1°,AF=AD,即有∠B=∠AFG=1°,AB=AF,AG=AG,在直角△ABG和直角△AFG中,AB=AF,AG=AG,∴△ABG≌△AFG;正确.∵AB=30,点E在边CD上,且CD=3DE,∴DE=FE=10,CE=20,不妨设BG=FG=x,(x>0),则CG=30-x,EG=10+x,在Rt△CEG中,(10+x)2=202+(30-x)2解得x=15,于是BG=GC=15;正确.∵BG=GF=CG,∴△CFG是等腰三角形,∵BG=AB,∴∠AGB≠60°,则∠FGC≠60°,∴△CFG不是正三角形.错误.∵,∴,∴S△FGC=S△EGC=××20×15=1.正确.正确的结论有①②④.故答案为:①②④.本题考查了正方形的性质,以及图形的折叠的性质,三角形全等的证明,理解折叠的性质是关键.13、0.1【解析】【分析】先求出视力在4.9≤x<5.5这个范围内的频数,然后根据“频率=频数÷总数”进行计算即可得答案.【详解】视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.1,故答案为:0.1.【点睛】本题考查了频率,熟练掌握频率的定义是解题的关键.三、解答题(本大题共5个小题,共48分)14、DE=2.【解析】

根据勾股定理的逆定理求出,求出线段AC长,根据直角三角形斜边上中线性质求出即可.【详解】,,为直角三角形,,在中,,,,,点为AC的中点,.考查了勾股定理、勾股定理的逆定理、直角三角形斜边上中线性质等知识点,能求出是直角三角形是解此题的关键.15、(2)证明见解析.(2)OG∥BF且OG=BF;证明见解析.(3)2.【解析】

(2)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)首先证明△BDG≌△BGF,从而得到OG是△DBF的中位线,即可得出答案;(3)设BC=x,则DC=x,BD=x,由△BGD≌△BGF,得出BF=BD,CF=(-2)x,利用勾股定理DF2=DC2+CF2,解得x2=2,即正方形ABCD的面积是2.【详解】(2)证明:在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)OG∥BF且OG=BF,理由:如图,∵BE平分∠DBC,∴∠2=∠3,在△BGD和△BGF中,,∴△BGD≌△BGF(ASA),∴DG=GF,∵O为正方形ABCD的中心,∴DO=OB,∴OG是△DBF的中位线,∴OG∥BF且OG=BF;(3)设BC=x,则DC=x,BD=x,由(2)知△BGD≌△BGF,∴BF=BD,∴CF=(-2)x,∵DF2=DC2+CF2,∴x2+[(-2)x]2=8-4,解得x2=2,∴正方形ABCD的面积是2.考点:2.正方形的性质;2.全等三角形的判定与性质;3.勾股定理.16、(1);(2).【解析】

(1)直接利用概率公式求解可得.(2)首先根据题意列表,然后列表求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.【详解】解:(1)张华用“微信”支付的概率是,故答案为:;(2)列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)由列表或树状图可知,共有16种结果,且每种结果的可能性相同,其中两人恰好选择同一种支付方式的有4种,故P(两人恰好选择同一种支付方式)=.此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.17、(1)x=;(2)x-1,.【解析】

(1)直接找出最简公分母进而去分母解方程得出答案;

(2)首先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】(1)方程两边同乘以3(x-1)得:

3x-3(x-1)=2x,

解得:x=,

检验:当x=时,3(x-1)≠0,

故x=是原方程的解;

(2)原式=

=x-1,

当时,原式=.此题考查解分式方程,分式的混合运算,正确进行分式的混合运算是解题关键.18、(1)1,;(2).【解析】

(1)由点的坐标为可知OA=3,OB=4,故)当点运动到点时,;当点运动到点时,t=;(2)分析题意,d与t的函数关系应分为①当时,利用勾股定理在中,,,.计算即可得:.②当时,过点作,垂足为,利用勾股定理:在中,,,故而.即.③当时,利用勾股定理:在中,,,所以.即.【详解】解:(1)1,;(2)①如图1,当时,∵在中,,,∴.即.②如图2,当时,过点作,垂足为,∵四边形为矩形,∴.∴四边形为矩形.∴.∴.∴.∴在中,,,∴.即.③如图3,当时,∵在中,,,∴.即.综上所述,.本题考查了动点问题与长度关系,灵活运用勾股定理进行解题是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

直接利用偶次方的性质以及二次根式的性质得出x,y的值进而得出答案.【详解】解:∵,∴x-1=0,y-1=0,解得:x=1,y=1,则xy=1.此题主要考查了完全平方公式,偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.20、【解析】

过D作AE的垂线交AE于F,交AC于D′,再过D′作D′P′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】解:解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=5,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=25,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=25,,即DQ+PQ的最小值为.本题考查了轴对称-最短路线问题、勾股定理、作图与基本作图等知识点的应用,解此题的关键是根据轴对称的性质找出P'点,题型较好,难度较大.21、2【解析】

由∠ACB=90°,CD是斜边上的中线,求出AB=1,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=31推出AC•BC=14,根据SAC•BC即可求出答案.【详解】如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=1.∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=31,∴(AC+BC)2﹣2AC•BC=31,∴AC•BC=14,∴SAC•BC=2.故答案为:2.本题考查了对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解答此题的关键.22、5【解析】

根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°;然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【详解】∵四边形ABCD为正方形,

∴∠BAE=∠D=90°,AB=AD,

在△ABE和△DAF中,∵AB=AD,∠BAE=∠D,AE=DF,

∴△ABE≌△DAF(SAS),

∴∠ABE=∠DAF,

∵∠ABE+∠BEA=90°,

∴∠DAF+∠BEA=90°,

∴∠AGE=∠BGF=90°,

∵点H为BF的中点,

∴GH=BF,

∵BC=8,CF=CD-DF=8-2=6,

∴BF==10,

∴GH=BF=5.本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.23、1【解析】

解:设小明一共买了x本笔记本,y支钢笔,根据题意,可得,可求得y≤因为y为正整数,所以最多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论