柳州市重点中学2025届数学九年级第一学期开学检测模拟试题【含答案】_第1页
柳州市重点中学2025届数学九年级第一学期开学检测模拟试题【含答案】_第2页
柳州市重点中学2025届数学九年级第一学期开学检测模拟试题【含答案】_第3页
柳州市重点中学2025届数学九年级第一学期开学检测模拟试题【含答案】_第4页
柳州市重点中学2025届数学九年级第一学期开学检测模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共10页柳州市重点中学2025届数学九年级第一学期开学检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,中,于点,点为的中点,连接,则的周长是()A.4+2 B.7+ C.12 D.102、(4分)下列函数(1)(2)(3)(4)(5)中,一次函数有()个.A.1 B.2 C.3 D.43、(4分)如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b的表达式为()A. B. C. D.4、(4分)7的小数部分是()A.4- B.3 C.4 D.35、(4分)关于函数,下列说法正确的是()A.自变量的取值范围是 B.时,函数的值是0C.当时,函数的值大于0 D.A、B、C都不对6、(4分)如图,在矩形中,,,点是边上一点,将沿折叠,使点落在点处.连结,当为直角三角形时,的长是()A. B. C.或 D.或7、(4分)正n边形每个内角的大小都为108°,则n=()A.5 B.6 C.7 D.88、(4分)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在比例尺为1:5000的地图上,量得甲,乙两地的距离为30cm,则甲,乙两地的实际距离是__________千米.10、(4分)若代数式在实数范围内有意义,则x的取值范围为_____.11、(4分)如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B的坐标是_____.12、(4分)如图,在矩形ABCD中,已知AB=3,BC=4,则BD=________.13、(4分)若正比例函数,y随x的增大而减小,则m的值是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,中,,两点在对角线上,.(1)求证:;(2)当四边形为矩形时,连结、、,求的值.15、(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:

A型

B型

价格(万元/台)

a

b

处理污水量(吨/月)

220

180经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.16、(8分)在平面直角坐标系xOy中,已知一次函数y=-12x+1的图像与x轴交于点A,与1求A,B两点的坐标2在给定的平面直角坐标系中画出该函数的图象;3根据图像回答:当y>0时,x的取值范围是.17、(10分)射击队为从甲、乙两名运动员选拔一人参加运动会,对他们进行了六次测试,测试成绩如下表(单位:环)第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)由表格中的数据,计算出甲的平均成绩是环,乙的成绩是环.(2)结合平均水平与发挥稳定性你认为推荐谁参加比赛更适合,请说明理由.18、(10分)如图,在ABCD中,延长边BA到点E,延长边DC到点F,使CF=AE,连接EF,分别交AD,BC于点M,N.求证:AM=CN.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图所示,点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列四个结论:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP;④PD=EC,其中正确结论的序号是_______.20、(4分)方程x4﹣16=0的根是_____.21、(4分)最简二次根式与是同类二次根式,则a的取值为__________.22、(4分)为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量与燃烧时间(分钟)成正比例;烧灼后,与成反比例(如图所示).现测得药物分钟燃烧完,此时教室内每立方米空气含药量为.研究表明当每立方米空气中含药量低于时,对人体方能无毒作用,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室.23、(4分)如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为___________二、解答题(本大题共3个小题,共30分)24、(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?25、(10分)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.26、(12分)某校为了了解学生对语文、数学、英语、物理四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:科目频数频率语文0.5数学12英语6物理0.2(1)求出这次调查的总人数;(2)求出表中的值;(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据等腰三角形三线合一的性质,先求出BE,再利用直角三角形斜边中线定理求出DE即可.【详解】∵在△ABC中,AB=AC=6,AE平分∠BAC,∴BE=CE=BC=4,又∵D是AB中点,∴BD=AB=3,∴DE是△ABC的中位线,∴DE=AC=3,∴△BDE的周长为BD+DE+BE=3+3+4=1.故选:D.本题主要考查了直角三角形斜边中线定理及等腰三角形的性质:是三线合一,是中学阶段的常规题.2、C【解析】

根据一次函数的定义进行分析,即可得到答案.【详解】解:根据题意,一次函数有:,,,共3个;故选择:C.本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3、B【解析】

根据等腰直角三角形的性质和三角函数分别求B、C两点的坐标,利用待定系数法求直线的表达式.【详解】∵A点坐标为(1,0),∴OA=1,∵∠BCA=60°,∠α=101°,∴∠BAC=101°﹣60°=41°,∴△AOB是等腰直角三角形,∴AO=BO=1,∴B(0,1).∵∠CBO=90°﹣∠BCA=30°,∴BC=2CO,BO==CO=1,∴CO=,∴C(﹣,0),把B(0,1)和C(﹣,0)代入y=kx+b中得:,解得:,∴直线BC的表达式为:y=x+1.故选B.本题考查了利用待定系数法求直线的解析式、含30度角的直角三角形、等腰直角三角形的性质及图形与坐标特点,熟练掌握图形与坐标特点是本题的关键.4、A【解析】

先对进行估算,然后确定7-的范围,从而得出其小数部分.【详解】解:∵3<<4

∴-4<-<-3

∴3<7-<4

∴7-的整数部分是3

∴7-的小数部分是7--3=4-

故选:A.本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在3和4之间,题目比较典型.5、C【解析】

根据该函数的性质进行判断即可.【详解】A.根据可得,自变量的取值范围是,错误;B.将代入函数解析式中,无意义,错误;C.当时,,正确;D.A、B错误,C正确,故选项D错误;故答案为:C.本题考查了函数的性质问题,掌握函数的定义以及性质是解题的关键.6、D【解析】

当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AFE=∠B=90°,而当△CEF为直角三角形时,只能得到∠EFC=90°,所以点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,则EB=EF,AB=AF=1,可计算出CF=4,设BE=x,则EF=x,CE=8-x,然后在Rt△CEF中运用勾股定理可计算出x.②当点F落在AD边上时,如图2所示.此时四边形ABEF为正方形.【详解】解:当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点F处,∴∠AFE=∠B=90°,当△CEF为直角三角形时,只能得到∠EFC=90°,∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,∴EB=EF,AB=AF=1,∴CF=10-1=4,设BE=x,则EF=x,CE=8-x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8-x)2,解得x=3,∴BE=3;②当点F落在AD边上时,如图2所示.此时ABEF为正方形,∴BE=AB=1.综上所述,BE的长为3或1.故选D.本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.7、A【解析】试题分析:∵正n边形每个内角的大小都为108°,∴每个外角为:72°,则n=360°÷72°=1.故选A.考点:多边形内角与外角.8、A【解析】

根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可.【详解】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选A.本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.1【解析】

设相距30cm的两地实际距离为xcm,根据题意可得方程l:1000=30:x,解此方程即可求得答案,注意统一单位.【详解】解:设相距30cm的两地实际距离为xcm,

根据题意得:l:1000=30:x,

解得:x=110000,

∵110000cm=1.1km,

∴甲,乙两地的实际距离是1.1千米.

故答案为:1.1.此题考查了比例尺的性质.此题比较简单,解题的关键是注意理解题意,根据题意列方程,注意统一单位.10、x≥﹣2且x≠1.【解析】

根据被开方式是非负数,且分母不等于零解答即可.【详解】若代数式在实数范围内有意义,则x+2≥0且x﹣1≠0,解得:x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.11、(﹣1,0).【解析】

根据点B与点A关于直线x=1对称确定点B的坐标即可.【详解】∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=1对称,而对称轴是直线x=1,点A的坐标为(3,0),∴点B的坐标是(﹣1,0).故答案为(﹣1,0).本题考查了二次函数的对称性,熟知二次函数的图象关于对称轴对称是解决问题的关键.12、1【解析】

先由矩形的性质求出CD=AB=3,再根据勾股定理可直接算出BD的长度.【详解】∵四边形ABCD是菱形,∴CD=AB=3,由勾股定理可知,BD=CD2故答案为1.本题主要考查了矩形的性质,勾股定理的知识点,熟练掌握勾股定理是解答本题的关键.13、﹣2【解析】

根据正比例函数的定义及性质可得,且m-1<0,即可求出m的值.【详解】由题意可知:,且m-1<0,解得m=-2.故答案为:-2.本题考查了正比例函数定义及性质.当k<0时,函数值y随x的增大而减小;当k>0时,函数值y随x的增大而增大.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(1)1.【解析】

(1)证明△ABE≌△CDF,根据全等三角形的对应边相等即可证得;

(1)根据四边形AECF为矩形,矩形的对角线相等,则AC=EF,据此即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,

∴AB∥CD,AB=CD.

∴∠1=∠1.

在△ABE和△CDF中,

∴△ABE≌△CDF(SAS),

∴AE=CF.

(1)解:∵四边形AECF为矩形,

∴AC=EF,

∴,

又∵△ABE≌△CDF,

∴BE=DF,

∴当四边形AECF为矩形时,=1.此题考查平行四边形的性质,矩形的性质,理解矩形的对角线相等是解题关键.15、(1);(2)有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台;④A型设备1台,B型设备7台;(1)为了节约资金,应选购A型设备2台,B型设备8台.【解析】

(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元,可列方程组求解.(2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式.(1)利用每月要求处理污水量不低于1880吨,可列不等式求解.【详解】解:(1)根据题意得:,解得:;(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,根据题意得,12x+9(10-x)≤100,∴x≤,∵x取非负整数,∴x=0,1,2,1∴10-x=10,9,8,7∴有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.④A型设备1台,B型设备7台;(1)由题意:220x+180(10-x)≥1880,∴x≥2,又∵x≤,∴x为2,1.当x=2时,购买资金为12×2+9×8=96(万元),当x=1时,购买资金为12×1+9×7=99(万元),∴为了节约资金,应选购A型设备2台,B型设备8台.本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.16、(1)A2,0,B【解析】

(1)分别令y=0,x=0求解即可;(1)根据两点确定一条直线过点A和点B作一条直线即为函数的图象;(3)结合图象可知y>0时x的取值范围即为函数图象在x轴上方部分对应的自变量的取值范围.【详解】解:(1)令y=0,则x=1,令x=0,则y=1,所以点A的坐标为(1,0),点B的坐标为(0,1);(1)如图:(3)当y>0时,x的取值范围是x<1故答案为:x<1.本题考查了一次函数图象与坐标轴的交点问题,一次函数与一元一次不等式,画出一次函数的图象,数形结合是解题的关键.17、(1)9,9;(2)甲.【解析】分析:1、首先根据图表得出甲、乙每一次的测试成绩,再利用平均数的计算公式分别求出甲、乙的平均成绩;2、得到甲、乙的平均成绩后,再结合方差的计算公式即可求出甲、乙的方差;接下来结合方差的意义,从稳定性方面进行分析,即可得出结果.详解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=.乙的方差=[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]=.推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.点睛:本题考查了平均数以及方差的求法及意义,正确掌握方差的计算公式是解答本题的关键.方差的计算公式为:.18、见解析.【解析】

由题意可证△AEM≌△FNC,可得结论.【详解】∵四边形ABCD是平行四边形∴BE∥DF,AD∥BC∴∠E=∠F,∠AME=∠BNE又∵∠BNE=∠CNF∴∠AME=∠CNF在△AEM和OCFN中∴ΔAEM≌ΔCFN(AAS)∴AM=CN.考查了平行四边形的性质,全等三角形的性质和判定,灵活运用这些性质解决问题是本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、①③④.【解析】

连接PC,根据正方形的对角线平分一组对角可得∠ABP=∠CBP=45°,然后利用“边角边”证明△ABP和△CBP全等,根据全等三角形对应边相等可得AP=PC,对应角相等可得∠BAP=∠BCP,再根据矩形的对角线相等可得EF=PC,对边相等可得PF=EC,再判断出△PDF是等腰直角三角形,然后根据等腰直角三角形的斜边等于直角边的倍解答即可.【详解】解:如图,连接PC,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,∵在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),

∴AP=PC,∠BAP=∠BCP,

又∵PE⊥BC,PF⊥CD,

∴四边形PECF是矩形,

∴PC=EF,∠BCP=∠PFE,

∴AP=EF,∠PFE=∠BAP,故①③正确;

∵PF⊥CD,∠BDC=45°,

∴△PDF是等腰直角三角形,

∴PD=PF,

又∵矩形的对边PF=EC,

∴PD=EC,故④正确;

只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故②错误;

综上所述,正确的结论有①③④.

故答案为:①③④.本题考查正方形的性质,矩形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,综合性较强,但难度不大,连接PC构造出全等三角形是解题的关键.20、±1【解析】

根据平方根的定义,很容易求解,或者把方程左边因式分解,通过降次的方法也可以求解.【详解】∵x4﹣16=0,∴(x1+4)(x+1)(x﹣1)=0,∴x=±1,∴方程x4﹣16=0的根是x=±1,故答案为±1.该题为高次方程,因此解决该题的关键,是需要把方程左边因式分解,从而达到降次的目的,把高次方程转化为低次方程,从而求解.21、【解析】分析:根据最简二次根式及同类二次根式的定义,令被开方数相等解方程.详解:根据题意得,3a+1=2

解得,a=

故答案为.点睛:此题主要考查了最简二次根式及同类二次根式的定义,正确理解同类二次根式的定义是解题的关键.22、1【解析】

先求得反比例函数的解析式,然后把代入反比例函数解析式,求出相应的即可;【详解】解:设药物燃烧后与之间的解析式,把点代入得,解得,关于的函数式为:;当时,由;得,所以1分钟后学生才可进入教室;故答案为:1.本题考查了一次函数与反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.23、【解析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,则AF=AB−BF.【详解】解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB(AAS),∴D′F=BF,设D′F=x,则AF=6−x,在Rt△AFD′中,(6−x)2=x2+42,解之得:x=,∴AF=AB−FB=6−=,∴S△AFC=•AF•BC=.故答案为:.本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、解答题(本大题共3个小题,共30分)24、A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.【解析】

设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等,列方程进行求解即可.【详解】设B型机器人每小时搬运kg化工原料,则A型机器人每小时搬运kg化工原料,由题意得,,解此分式方程得:,经检验是分式方程的解,且符合题意,当时,,答:A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.25、(1)AE=EF=AF;(2)证明过程见解析;(3)3-【解析】试题分析:(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•sin60°,因为CF=BE,只要求出BE即可解决问题.试题解析:解:(1)结论AE=EF=AF.理由:如图1中,连接AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论