版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页江西省上饶市广丰区丰溪中学2025届九上数学开学达标检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列命题中,逆命题是真命题的是()A.直角三角形的两锐角互余B.对顶角相等C.若两直线垂直,则两直线有交点D.若x=1,则x2=12、(4分)如图,、两点在反比例函数的图象上,、两点在反比例函数的图象上,轴于点,轴于点,,,,则的值是()A.8 B.6 C.4 D.103、(4分)若解分式方程产生增根,则m=()A.1 B.0 C.﹣4 D.﹣54、(4分)如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD的长度为()A.3 B.4 C.4.8 D.55、(4分)关于一次函数,下列结论正确的是()A.图象过点 B.图象与轴的交点是C.随的增大而增大 D.函数图象不经过第三象限6、(4分)如图,在中,,分别以、为圆心,以大于的长为半径画弧,两弧相交于、两点,直线交于点,若的周长是12,则的长为()A.6 B.7 C.8 D.117、(4分)直角三角形的两边为9和40,则第三边长为()A.50 B.41 C.31 D.以上答案都不对8、(4分)下列数字中,不是不等式的解的是()A. B.0 C. D.4二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC=.10、(4分)直角三角形的两边长分别为3和5,则第三条边长是________.11、(4分)平面直角坐标系中,点A在函数(x>0)的图象上,点B在(x<0)的图象上,设A的横坐标为a,B的横坐标为b,当|a|=|b|=5时,求△OAB的面积为____;12、(4分)若关于x的分式方程有增根,则k的值为__________.13、(4分)已知平行四边形ABCD中,,,AE为BC边上的高,且,则平行四边形ABCD的面积为________.三、解答题(本大题共5个小题,共48分)14、(12分)已知直线:与轴交于点A.(1)A点的坐标为.(2)直线和:交于点B,若以O、A、B、C为顶点的四边形是平行四边形,求点C的坐标.15、(8分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠F=60°,,求的长.16、(8分)已知直线y=kx+b经过点A(0,1),B(2,5).(1)求直线AB的解析式;(2)若直线y=﹣x﹣5与直线AB相交于点C.求点C的坐标;并根据图象,直接写出关于x的不等式﹣x﹣5<kx+b的解集.(3)直线y=﹣x﹣5与y轴交于点D,求△ACD的面积.17、(10分)如图,在矩形ABCD中,AB=1,对角线AC、BD相交于点O,过点O作EF⊥AC分别交射线AD与射线CB于点E和点F,联结CE、AF.(1)求证:四边形AFCE是菱形;(2)当点E、F分别在边AD和BC上时,如果设AD=x,菱形AFCE的面积是y,求y关于x的函数关系式,并写出x的取值范围;(3)如果△ODE是等腰三角形,求AD的长度.18、(10分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证△ACD≌△BFD(2)求证:BF=2AE;(3)若CD=,求AD的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若分式值为0,则的值为__________.20、(4分)如图,平行四边形的对角线相交于点,且,过点作,交于点.若的周长为,则______.21、(4分)如图,在△ABC中,AB=3cm,BC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_______cm.22、(4分)在平面直角坐标系中有一点,则点P到原点O的距离是________.23、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正确的结论有__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在中,点、分别在边、上,且AE=CF,连接,请只用无刻度的直尺画出线段的中点,并说明这样画的理由.25、(10分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.26、(12分)(1)计算:(+5)(-5).(2)计算.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】试题分析:交换原命题的题设与结论得到四个命题的逆命题,然后分别利用直角三角形的判定、对顶角的定义、两直线垂直的定义和平方根的定义对四个逆命题的真假进行判断.解:A、逆命题为有两角互余的三角形为直角三角形,此逆命题为真命题,所以A选项正确;B、逆命题为相等的角为对顶角,此逆命题为假命题,所以B选项错误;C、逆命题为两直线有交点,则两直线垂直,此逆命题为假命题,所以C选项错误;D、逆命题为若x2=1,则x=1,此逆命题为假命题,所以D选项错误.故选A.2、A【解析】
由反比例函数的性质可知S△AOE=S△BOF=k1,S△COE=S△DOF=﹣k2,结合S△AOC=S△AOE+S△COE和S△BOD=S△DOF+S△BOF可求得k1﹣k2的值.【详解】解:连接OA、OC、OD、OB,如图:由反比例函数的性质可知S△AOE=S△BOF=|k1|=k1,S△COE=S△DOF=|k2|=﹣k2,∵S△AOC=S△AOE+S△COE,∴AC•OE=×4OE=2OE=(k1﹣k2)…①,∵S△BOD=S△DOF+S△BOF,∴BD•OF=×(EF﹣OE)=×2(6﹣OE)=6﹣OE=(k1﹣k2)…②,由①②两式解得OE=2,则k1﹣k2=1.故选:A.本题考查反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.3、D【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出m的值.【详解】解:方程两边都乘,得,原方程增根为,把代入整式方程,得,故选D.本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.4、D【解析】
已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC的中位线,即可得DE==3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.5、D【解析】
A、把点的坐标代入关系式,检验是否成立;B、把y=0代入解析式求出x,判断即可;C、根据一次项系数判断;D、根据系数和图象之间的关系判断.【详解】解:A、当x=1时,y=1.所以图象不过(1,−1),故错误;B、把y=0代入y=−2x+3,得x=,所以图象与x轴的交点是(,0),故错误;C、∵−2<0,∴y随x的增大而减小,故错误;D、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.故选:D.本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.6、B【解析】
利用垂直平分线的作法得MN垂直平分AC,则,利用等线段代换得到△CDE的周长,即可解答.【详解】由作图方法可知,直线是的垂直平分线,所以,的周长,所以,,所以,选项B正确.此题考查平行四边形的性质,作图—基本作图,解题关键在于得到△CDE的周长.7、D【解析】
考虑两种情况:9和40都是直角边或40是斜边.根据勾股定理进行求解.【详解】①当9和40都是直角边时,则第三边是92+②当40是斜边时,则第三边是402-92则第三边长为41或731故选D.此题考查勾股定理,解题关键在于分情况讨论.8、A【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的负整数即可.【详解】不等式的解集是x≥-4,故选:A.此题考查一元一次不等式的解,正确解不等式,求出解集是解题的关键.解不等式应根据不等式的基本性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、1+【解析】分析:首先根据三角形外角的性质可得∠B=∠BAD,根据等角对等边可得BD=AD=√55,然后利用勾股定理计算出CD长,进而可得BC长.详解:∵∠B+∠DAB=∠ADC,∠ADC=2∠B,
∴∠B=∠BAD,
∴BD=AD=,
∵∠C=90°,
∴CD===1,
∴BC=+1.故答案为.点睛:此题主要考查了勾股定理,以及三角形外角的性质,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10、4或【解析】
由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.【详解】∵直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则x==,综上所述,第三边的长为4或,故答案为:4或.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.注意分类讨论思想的运用.11、2【解析】
根据已知条件可以得到点A、B的横坐标,则由反比例函数图象上点的坐标特征易求点O到直线AB的距离,所以根据三角形的面积公式进行解答即可;【详解】)∵a>0,b<0,当|a|=|b|=5时,可得A(5,),B(−5,),∴S△OAB=×10×=2;此题考查反比例函数,解题关键在于得到点A、B的横坐标12、或【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.【详解】解:去分母得:,整理得:由分式方程有增根,得到,解得:或,把代入整式方程得:;把代入整式方程得:,则的值为或.故答案为:或此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.13、2或1【解析】
分高AE在△ABC内外两种情形,分别求解即可.【详解】①如图,高AE在△ABC内时,在Rt△ABE中,BE==9,在Rt△AEC中,CE==5,∴BC=BE+EC=14,∴S平行四边形ABCD=BC×AE=14×12=1.②如图,高AE在△ABC外时,BC=BE-CE=9-5=4,∴S平行四边形ABCD=BC×AE=12×4=2,故答案为1或2.本题考查平行四边形的性质.四边形的面积,解题的关键是学会用分类讨论的思想思考问题.三、解答题(本大题共5个小题,共48分)14、(1)(0,2);(2)(3,2)或(3,6)或(-3,-2).【解析】
(1),令x=0,则y=2,即可求解;(2)分AO是平行四边形的一条边、AO是平行四边形的对角线,两种情况分别求解即可.【详解】解:(1),令x=0,则y=2,则点A(0,2),故答案为(0,2);(2)联立直线l1和l2的表达式并解得:x=3,故点B(3,4),①当AO是平行四边形的一条边时,则点C(3,2)或(3,6);②当AO是平行四边形的对角线时,设点C的坐标为(a,b),点B(3,4),BC的中点和AO的中点坐标,由中点坐标公式:a+3=0,b+4=2,解得:a=-3,b=-2,故点C(-3,-2);故点C坐标为:(3,2)或(3,6)或(-3,-2).本题考查的是一次函数综合运用,涉及到平行四边形的性质,其中(2),要分类求解,避免遗漏.15、(1)证明见解析(2)3【解析】试题分析:(1)已知四边形ABCD为平行四边形,根据平行四边形的性质可得AB=CD,AD∥BC,所以∠F=∠1.再由AF平分∠BAD,可得∠2=∠1.所以∠F=∠2,根据等腰三角形的判定可得AB=BF,即可得BF=CD;(2)先判定△BEF为Rt△,在Rt△BEF即可求解.试题解析:(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BC.∴∠F=∠1.又∵AF平分∠BAD,∴∠2=∠1.∴∠F=∠2.∴AB=BF.∴BF=CD.(2)解:∵AB=BF,∠F=60°,∴△ABF为等边三角形.∵BE⊥AF,∠F=60°,∴∠BEF=90°,∠3=30°.在Rt△BEF中,设,则,∴.∴.∴AB=BF=3.16、(1)直线AB的解析式为y=2x+1;(2)x>﹣2;(3)△ACD的面积为1.【解析】
(1)利用待定系数法求一次函数解析式解答即可;
(2)联立两直线解析式,解方程组即可得到点C的坐标;根据函数图象,即可得到x的取值范围.
(3)得出点D的坐标,利用三角形的面积公式解答即可.【详解】解:(1)将点A(0,1)、B(2,5)代入y=kx+b,得:,解得:,所以直线AB的解析式为y=2x+1;(2)由得,∴点C(﹣2,﹣3),由函数图象知当x>﹣2时,y=﹣x﹣5在直线y=2x+1下方,∴不等式﹣x﹣5<kx+b的解集为x>﹣2;(3)由y=﹣x﹣5知点D(0,﹣5),则AD=1,∴△ACD的面积为×1×2=1.本题考查一次函数综合应用,解题的关键是掌握一次函数的性质.17、(1)见解析;(2);(3)AD的值为或.【解析】
(1)由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.(2)由cos∠DAC=,求出AE即可解决问题;(3)分两种情形分别讨论求解即可.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.(2)由题意可知:,,∵,∴,∴,∵AE≤AD,∴,∴x2≥1,∵x>0,∴x≥1.即(x≥1).(3)①如图2中,当点E在线段AD上时,ED=EO,则Rt△CED≌Rt△CEO,∴CD=CO=AO=1,在Rt△ADC中,AD=.如图3中,当的E在线段AD的延长线上时,DE=DO,∵DE=DO=OC,EC=CE,∴Rt△ECD≌Rt△CEO,∴CD=EO,∵∠DAC=∠EAO,∠ADC=∠AOE=90°,∴△ADC≌△AOE,∴AE=AC,∵EO垂直平分线段AC,∴EA=EC,∴EA=EC=AC,∴△ACE是等边三角形,∴AD=CD•tan30°=,综上所述,满足条件的AD的值为或.本题考查四边形综合题、矩形的性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.18、(1)见解析;(1)见解析;(3)AD=1+【解析】
(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等;(1)根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AE,从而得证;(3)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【详解】(1)∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,∴△ACD≌△BFD(ASA)(1)由(1)可知:BF=AC∵AB=BC,BE⊥AC,∴AC=1AE,∴BF=1AE;(3)∵△ACD≌△BFD,∴DF=CD=,在Rt△CDF中,CF=,∵BE⊥AC,AE=EC,∴AF=CF=1.∴AD=AF+DF=1+本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、-1【解析】
根据分式值为0的条件进行求解即可.【详解】由题意得,x+1=0,解得x=-1,故答案为:-1.本题考查了分式值为0的条件,熟练掌握分式值为0时,分子为0且分母不为0是解题的关键.20、6.【解析】
根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,即可解答.【详解】∵ABCD是平行四边形,∴OA=OC,AD=BC,AB=CD∵OM⊥AC,∴AM=MC.∴△CDM的周长=AD+CD=9,BC=9-3=6故答案为6.此题考查平行四边形的性质,解题关键在于得出MC=MA21、8【解析】由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm.22、13【解析】
根据点的坐标利用勾股定理,即可求出点P到原点的距离【详解】解:在平面直角坐标系中,点P到原点O的距离为:,故答案为:13.本题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.23、①②③④⑤【解析】
由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1,由勾股定理求出x=2,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;分别求出△EGC,△AEF的面积,可以判断④,由,可求出△FGC的面积,故此可对⑤做出判断.【详解】解:解:∵四边形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=2DE,
∴DE=1,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中,,
∴Rt△ABG≌Rt△AFG(HL).
∴①正确;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF.
设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1.
在Rt△ECG中,由勾股定理得:CG1+CE1=EG1.
∵CG=6-x,CE=4,EG=x+1,
∴(6-x)1+41=(x+1)1,解得:x=2.
∴BG=GF=CG=2.
∴②正确;
∵CG=GF,
∴∠CFG=∠FCG.
∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF.
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG.
∴AG∥CF.
∴③正确;
∵S△EGC=×2×4=6,S△AEF=S△ADE=×6×1=6,
∴S△EGC=S△AFE;
∴④正确,
∵△CFG和△CEG中,分别把FG和GE看作底边,
则这两个三角形的高相同.
∴,
∵S△GCE=6,
∴S△CFG=×6=2.6,
∴⑤正确;
故答案为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国锡锑银镍封装焊料行业投资前景及策略咨询研究报告
- 刘伟课件(客运和危货港口码头企业达标指标)
- 2024至2030年金卤灯专用老炼机项目投资价值分析报告
- 2024至2030年中国无碳电传纸行业投资前景及策略咨询研究报告
- 2024至2030年中国工业激光应用系统行业投资前景及策略咨询研究报告
- 人教版数学二年级上册-617的乘法口诀-教学课件
- 2024至2030年中国多媒体智能公用电话行业投资前景及策略咨询研究报告
- 2024至2030年无线调度台项目投资价值分析报告
- 2024至2030年平管板项目投资价值分析报告
- 2024至2030年塑钢水晶角线项目投资价值分析报告
- 年级组长工作手册1
- 动物医学-毕业论文
- actl是当前世界治疗癌症的领先技术
- 德育课程体系简图
- 供应商年度审核计划及现场审核表
- (完整word版)铣槽12专用夹具资料
- 个人书面检查三篇
- 一年级数学上学期培优辅差记录表
- 标准化养羊场建设方案(附图纸)
- 全国社保行政区域划分代码
- 2022年上海初中生命科学学业考试卷
评论
0/150
提交评论