东营市重点中学2025届高二上数学期末学业水平测试模拟试题含解析_第1页
东营市重点中学2025届高二上数学期末学业水平测试模拟试题含解析_第2页
东营市重点中学2025届高二上数学期末学业水平测试模拟试题含解析_第3页
东营市重点中学2025届高二上数学期末学业水平测试模拟试题含解析_第4页
东营市重点中学2025届高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

东营市重点中学2025届高二上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数中相同的是()A.极差 B.方差C.平均数 D.中位数2.已知椭圆:的离心率为,则实数()A. B.C. D.3.双曲线的焦点到渐近线的距离为()A. B.C. D.4.函数,的值域为()A. B.C. D.5.设数列、都是等差数列,若,则等于()A. B.C. D.6.等差数列的前项和为,若,,则()A.12 B.18C.21 D.277.已知命题:抛物线的焦点坐标为;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A. B.C. D.8.在△ABC中,角A,B,C的对边分别为a,b,c,若,则△ABC()A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形 D.是锐角或直角三角形9.设集合,,则()A. B.C. D.10.已知等差数列满足,,则()A. B.C. D.11.曲线在处的切线如图所示,则()A.0 B.C. D.12.已知双曲线(,)的左,右焦点分别为,.若双曲线右支上存在点,使得与双曲线的一条渐近线垂直并相交于点,且,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,双曲线左、右焦点分别为,,点M是双曲线右支上一点,,则双曲线的渐近线方程为___________.14.若圆柱的高、底面半径均为1,则其表面积为___________15.数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图).给出下列三个结论:其中,所有正确结论的序号是____________①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围城的“心形”区域的面积小于316.从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数a,另一个作为对数的真数b.则的概率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知中,分别为角的对边,且(1)求;(2)若为边的中点,,求的面积18.(12分)设命题p:实数x满足,其中;命题q:若,且为真,求实数x的取值范围;若是的充分不必要条件,求实数m的取值范围19.(12分)已知椭圆C:的离心率为,左、右焦点分别为、,椭圆上的点到左焦点最近的距离为.(1)求椭圆C的方程;(2)若经过点的直线与椭圆C交于M,N两点,当的面积取得最大值时,求直线的方程.20.(12分)已知直线:,直线:(1)若,之间的距离为3,求c的值:(2)求直线截圆C:所得弦长21.(12分)已知集合,.(1)当时,求AB;(2)设,,若是成立的充分不必要条件,求实数的取值范围.22.(10分)如图,三棱锥中,两两垂直,,且分别为线段的中点.(1)若点是线段的中点,求证:直线平面;(2)求证:平面平面.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据茎叶图中数据的波动情况,可直接判断方差不同;根据茎叶图中的数据,分别计算极差、中位数、平均数,即可得出结果.【详解】由茎叶图可得:甲的数据更集中,乙的数据较分散,所以甲与乙的方差不同;甲的极差为;乙的极差为,所以甲与乙的极差不同;甲的中位数为,乙的中位数为,所以中位数不同;甲的平均数为,乙的平均数为,所以甲、乙的平均数相同;故选:C.2、C【解析】根据题意,先求得的值,代入离心率公式,即可得答案.【详解】因为,所以所以,解得.故选:C3、D【解析】根据题意,由双曲线的标准方程可得双曲线的焦点坐标以及渐近线方程,由点到直线的距离公式计算可得答案.【详解】解:根据题意,双曲线的方程为,其焦点坐标为,其渐近线方程为,即,则其焦点到渐近线的距离;故选D.【点睛】本题考查双曲线的几何性质,关键是求出双曲线的渐近线与焦点坐标.4、A【解析】利用基本不等式可得,进而可得,即求.【详解】∵,∴,当且仅当,即时取等号,∴,,∴.故选:A.5、A【解析】设等差数列的公差为,根据数列是等差数列可求得,由此可得出,进而可求得所求代数式的值.【详解】设等差数列的公差为,即,由于数列也为等差数列,则,可得,即,可得,即,解得,所以,数列为常数列,对任意的,,因此,.故选:A.【点睛】关键点点睛:本题考查等差数列基本量的求解,通过等差数列定义列等式求解公差是解题的关键,另外,在求解有关等差数列基本问题时,可充分利用等差数列的定义以及等差中项法来求解.6、B【解析】根据等差数列的前项和为具有的性质,即成等差数列,由此列出等式,求得答案.【详解】因为为等差数列的前n项和,且,,所以成等差数列,所以,即,解得=18,故选:B.7、D【解析】求出的焦点坐标,及等轴双曲线的离心率,判断出为假命题,q为真命题,进而判断出答案.【详解】抛物线的焦点坐标为,故命题为假命题;命题:等轴双曲线中,,所以离心率为,故命题q为真命题,所以为真命题,其他选项均为假命题.故选:D8、C【解析】由余弦定理确定角的范围,从而判断出三角形形状【详解】由得-cosC>0,所以cosC<0,从而C为钝角,因此△ABC一定是钝角三角形.故选:C9、C【解析】根据集合交集和补集的概念及运算,即可求解.【详解】由题意,集合,,根据补集的运算,可得,所以.故选:C.10、D【解析】根据等差数列的通项公式求出公差,再结合即可得的值.【详解】因为是等差数列,设公差为,所以,即,所以,所以,故选:D.11、C【解析】由图示求出直线方程,然后求出,,即可求解.【详解】由直线经过,,可求出直线方程为:∵在处的切线∴,∴故选:C【点睛】用导数求切线方程常见类型:(1)在出的切线:为切点,直接写出切线方程:;(2)过出的切线:不是切点,先设切点,联立方程组,求出切点坐标,再写出切线方程:.12、B【解析】利用渐近线方程和直线解出Q点坐标,再由得P点坐标,代入双曲线方程得到a、b、c的齐次式可解.【详解】如图,因为与渐近线垂直所以的斜率为,方程为解的Q的坐标为设P点坐标为则,因为,所以,得点P坐标为,代入得:所以,即所以渐近线方程为故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先根据已知条件得到,再结合双曲线的几何性质求解即可.【详解】如图所示:,,所以,即.设,则,.即,,,,所以,渐近线方程为.故答案为:14、【解析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径,则表面积.故答案为:15、①②【解析】根据题意,先判断曲线关于轴对称,由基本不等式的性质对方程变形,得到,可判定①正确;当时,,得到曲线右侧部分的点到原点的距离都不超过,再根据曲线的对称性,可判定②正确;由轴的上方,图形的面积大于四点围成的矩形的面积,在轴的下方,图形的面积大于三点围成的三角形的面积,可判断③不正确.【详解】根据题意,曲线,用替换曲线方程中的,方程不变,所以曲线关于轴对称,对于①中,当时,,即为,可得,所以曲线经过点,再根据对称性可知,曲线还经过点,故曲线恰好经过6个整点,所以①正确;对于②中,由①可知,当时,,即曲线右侧部分的点到原点的距离都不超过,再根据曲线的对称性可知,曲线上任意一点到原点的距离都不超过,所以②正确;对于③中,因为在轴的上方,图形的面积大于四点围成的矩形的面积,在轴的下方,图形的面积大于三点围成的三角形的面积,所以曲线所围城的“心形”区域的面积大于3,所以③不正确.故选:①②16、##【解析】利用列举法,结合古典概型概率计算公式以及对数的知识求得正确答案.【详解】的所有可能取值为,,共种,满足的为,,共种,所以的概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用正弦定理化边为角可得,化简可得,结合,即得解;(2)在中,由余弦定理得,可得,利用面积公式即得解【详解】(1)中由正弦定理及条件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)为边的中点,,,得,中,由余弦定理得,∴,∴,∵,∴,18、(1)(2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;写出命题所对应的集合,命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,则A是B的真子集,列不等式组可求解【详解】解:(1)由,其中;解得,又,即,由得:,又为真,则,得:,故实数x的取值范围为;由得:命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,A是B的真子集,所以,即故实数m取值范围为:.【点睛】本题考查了二次不等式的解法,复合命题的真假,命题与集合的关系,属于简单题19、(1)(2)【解析】(1)根据题意得,,进而解方程即可得答案;(2)根据题意设直线的方程,,,进而,再联立方程,结合韦达定理求解即可.【小问1详解】解:因为椭圆C:的离心率为,所以,因为椭圆上的点到左焦点最近的距离为,所以所以,所以椭圆C的方程为.【小问2详解】解:根据题意,设直线的方程,,设,联立方程得,所以,解得或.,所以的面积为令,则,当且仅当,即时,等号成立.所以当的面积取得最大值时,直线的方程为.20、(1)或(2)【解析】(1)根据两条平行直线的距离公式列方程,化简求得的值.(2)利用弦长公式求得.【小问1详解】因为两条平行直线:与:间的距离为3,所以解得或.【小问2详解】圆C:,圆心为,半径为.圆心到直线的距离为,所以弦长21、(1);(2).【解析】(1)由,解得范围,可得,由可得:,解得.即可得出(2)由,解得.根据是成立的必要条件,利用包含关系列不等式即可得出实数的取值范围【详解】(1)由,解得,可得:,可得:,化为:,解得,所以=.(2)q是p成立的充分不必要条件,所以集合B是集合A的真子集.由,解得,又集合A=,所以或解得0≤a≤2,即实数a的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论