版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届杭州第十三中学数学高一上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图示,则将的图象向右平移个单位后,得到的图象解析式为()A. B.C. D.2.古希腊数学家阿基米德最为满意的一个数学发现是“圆柱容球”,即在球的直径与圆柱底面的直径和圆柱的高相等时,球的体积是圆柱体积的,且球的表面积也是圆柱表面积的.已知体积为的圆柱的轴截面为正方形.则该圆柱内切球的表面积为()A B.C. D.3.若是第三象限角,且,则是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角4.将函数的图象向左平移个单位长度得到函数的图象,下列说法正确的是()A.是奇函数 B.的周期是C.的图象关于直线对称 D.的图象关于点对称5.若,则a,b,c的大小关系是()A. B.C. D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是A.17π B.18πC.20π D.28π7.设是周期为的奇函数,当时,,则A. B.C. D.8.已知函数的部分图象如图所示,点,是该图象与轴的交点,过点作直线交该图象于两点,点是的图象的最高点在轴上的射影,则的值是A B.C.1 D.29.下列各式中成立的是A. B.C. D.10.如图,质点在单位圆周上逆时针运动,其初始位置为,角速度为2,则点到轴距离关于时间的函数图象大致为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将图象向右平移个单位后,所得图象关于原点对称,则的值为______12.已知f(x)是定义在R上的奇函数且以6为周期,若f(2)=0,则f(x)在区间(0,10)内至少有________零点.13.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.14.已知函数,其所有的零点依次记为,则_________.15.若函数在区间上有两个零点,则实数的取值范围是_______.16.已知角的终边经过点,则的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若关于x的不等式的解集为区间,求a的值;(2)设,解关于x的不等式.18.已知集合,.(1)分别判断元素,与集合A,B的关系;(2)判断集合A与集合B的关系并说明理由.19.已知函数.(1)求函数的最小正周期及单调递增区间;(2)求函数在区间上的值域.20.若函数对任意,恒有(1)指出的奇偶性,并给予证明;(2)如果时,,判断的单调性;(3)在(2)的条件下,若对任意实数x,恒有.成立,求k的取值范围21.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,求:(1)从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时候后,学生才能回到教室.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由图像知A="1,",,得,则图像向右移个单位后得到的图像解析式为,故选D2、A【解析】由题目给出的条件可知,圆柱内切球的表面积圆柱表面积的,通过圆柱的体积求出圆柱底面圆半径和高,进而得出表面积,再计算内切球的表面积.【详解】设圆柱底面圆半径为,则圆柱高为,圆柱体积,解得,又圆柱内切球的直径与圆柱底面的直径和圆柱的高相等,所以内切球的表面积是圆柱表面积的,圆柱表面积为,所以内切球的表面积为.故选:A.3、D【解析】根据是第三象限角,写出角的集合,进一步得到的集合,再根据得到答案【详解】是第三象限角,,则,即是第二象限或者第四象限角,,是第四象限角故选:D4、D【解析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【详解】由题意可得,对于A,函数是偶函数,A错误:对于B,函数最小周期是,B错误;对于C,由,则直线不是函数图象的对称轴,C错误;对于D,由,则是函数图象的一个对称中心,D正确.故选:D.5、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.6、A【解析】由三视图知,该几何体的直观图如图所示:是一个球被切掉左上角的,即该几何体是个球,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和,即,故选A【考点】三视图及球的表面积与体积【名师点睛】由于三视图能有效地考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般与几何体的表面积与体积相结合.由三视图还原出原几何体是解决此类问题的关键.7、A【解析】根据f(x)是奇函数可得f(﹣)=﹣f(),再根据f(x)是周期函数,周期为2,可得f()=f(﹣4)=f(),再代入0≤x≤1时,f(x)=2x(1﹣x),进行求解.【详解】∵设f(x)是周期为2的奇函数,∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵当0≤x≤1时,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故选A【点睛】此题主要考查周期函数和奇函数的性质及其应用,注意所求值需要利用周期进行调节,此题是一道基础题.8、B【解析】分析:由图象得到函数的周期,进而求得.又由条件得点D,E关于点B对称,可得,然后根据数量积的定义求解可得结果详解:由图象得,∴,∴又由图象可得点B为函数图象的对称中心,∴点D,E关于点B对称,∴,∴故选B点睛:本题巧妙地将三角函数的图象、性质和向量数量积的运算综合在一起,考查学生分析问题和解决问题的能力.解题的关键是读懂题意,通过图象求得参数;另外,根据函数图象的对称中心将向量进行化简,从而达到能求向量数量积的目的9、D【解析】根据指数运算法则分别验证各个选项即可得到结果.【详解】中,中,,中,;且等式不满足指数运算法则,错误;中,,错误;中,,则,错误;中,,正确.故选:【点睛】本题考查指数运算法则的应用,属于基础题.10、A【解析】利用角速度先求出时,的值,然后利用单调性进行判断即可【详解】因为,所以由,得,此时,所以排除CD,当时,越来越小,单调递减,所以排除B,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变得到,再将图象向右平移个单位,得到,即,其图象关于原点对称.∴,,又∴故答案为12、6【解析】直接利用f(x)的奇偶性和周期性求解.【详解】因为f(x)是定义在R上奇函数且以6为周期,所以f(x)=-f即f-x所以f(x)的图象关于3,0对称,且f3则f9又f(0)=0,f(6)=0,又f(2)=0,所以f(8)=0,f(-2)=0,f(4)=0,所以f(x)在区间(0,10)内至少有6个零点.故答案为:6个零点13、【解析】设出点的坐标,根据题意列出方程组,从而求得该点到原点的距离.【详解】设该点的坐标因为点到三个坐标轴的距离都是1所以,,,所以故该点到原点的距离为,故填.【点睛】本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题.14、16【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.【详解】函数的零点即所以去绝对值可得或即或去绝对值可得或,或当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得综上可得所有零点的乘积为故答案为:【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.15、【解析】由题意根据数形结合,只要,并且对称轴在之间,,解不等式组即可【详解】由题意,要使函数区间上有两个零点,只要,即,解得,故答案为【点睛】本题主要考查了二次函数的性质,函数零点的分布,关键是结合二次函数图象等价得到不等式组,常见的形式有考虑端点值处函数值的符号,对称轴与所给区间的关系,对称轴处函数值的符号等,属于中档题.16、##【解析】根据三角函数定义得到,,进而得到答案.【详解】角的终边经过点,,,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解析】(1)先将分式不等式转化成一元二次不等式,再根据解集与根的关系,即得结果;(2)先将分式不等式转化成一元二次不等式,再结合根的大小对a进行分类讨论求解集即可.【详解】(1)由,得,即,即,等价于,由题意得,则;(2)即,即.①当时,不等式即为,则,此时原不等式解集为;②当时,不等式即为.1°若,则,所以,此时原不等式解集为;2°若,则,不等式为,x不存在,此时原不等式解集为;3°若,则,所以,此时原不等式解集为.【点睛】分式不等式的解法:等价于;等价于;等价于或;等价于或.18、(1),,,;(2),理由见解析.【解析】(1)根据集合的描述,判断是否存在使,属于集合A,B即可.(2)法一:由(1)结论,并判断是否有,即知A与B的关系;法二:={x|x是的整数倍},={x|x是的奇数倍},即知A与B的关系;【小问1详解】法一:令,得,故;令,得,故.同理,令,得,故;令,得,故.法二:由题意得:,又,故,;,.【小问2详解】法一:由(1)得:,,故;又,,由,得,故,所以,都有,即,又,所以.法二:由题意得={x|x是的整数倍},={x|x是的奇数倍},因为奇数集是整数集的真子集,所以集合B是集合A的真子集,即.19、(1)最小正周期为,单调递增区间为;(2).【解析】(1)利用三角恒等变换化简得出,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可得出函数的单调递增区间;(2)由可求得的取值范围,利用正弦型函数的基本性质可求得函数的值域.【小问1详解】解:,所以,函数的最小正周期为,由得,故函数的单调递增区间为.【小问2详解】解:当时,,,所以,,即函数在区间上的值域为.20、(1)奇函数,证明见解析;(2)在R上单调递减,证明见解析;(3)【解析】(1)利用赋值法求出,根据函数奇偶性定义即可证明;(2)根据函数单调性定义即判断函数的单调性;(3)结合函数的奇偶性和单调性,将不等式进行等价转化,即可得到结论【详解】(1)为奇函数;证明:令,得,解得:令,则,所以函数为奇函数;(2)在R上单调递减;证明:任意取,且,则,又,即所以在R上单调递减;(3)对任意实数x,恒有等价于成立又在R上单调递减,即对任意实数x,恒成立,当时,即时,不恒成立;当时,即时,则,解得:所以实数k的取值范围为【点睛】方法点睛:本题考查函数的单调性、奇偶性及含参不等式的解法,要设法把隐性转化为显性,方法是:(1)把不等式转化为的模型;(2)判断的单调性,再根据函数的单调性将“”脱掉,得到具体的不等式组来求解,但注意奇偶函数的区别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版房屋买卖合同续约委托书范本3篇
- 2025年推土机租赁项目环境保护与修复合同3篇
- 二零二五年度民爆物品装卸作业安全设施升级改造合同4篇
- 词汇对话课程设计案例
- 年度彩色喷涂纸市场分析及竞争策略分析报告
- 2025个人艺术品租赁交易合同4篇
- 南京eps施工方案
- 2025年度石油采矿权抵押融资协议范本3篇
- 2025年度个人教育培训课程及支付协议4篇
- 2025年版个人市政工程劳务合同范本4篇
- 电竞赛事策划全解析
- 圆周率的认识
- 基于SMT求解器的分支条件覆盖测试
- 反骚扰政策程序
- 射频在疼痛治疗中的应用
- 四年级数学竖式计算100道文档
- “新零售”模式下生鲜电商的营销策略研究-以盒马鲜生为例
- 项痹病辨证施护
- 怀化市数字经济产业发展概况及未来投资可行性研究报告
- 07FD02 防空地下室电气设备安装
- 教师高中化学大单元教学培训心得体会
评论
0/150
提交评论