福建省宁德2025届数学高二上期末质量跟踪监视试题含解析_第1页
福建省宁德2025届数学高二上期末质量跟踪监视试题含解析_第2页
福建省宁德2025届数学高二上期末质量跟踪监视试题含解析_第3页
福建省宁德2025届数学高二上期末质量跟踪监视试题含解析_第4页
福建省宁德2025届数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省宁德2025届数学高二上期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某研究所为了研究近几年中国留学生回国人数的情况,对2014至2018年留学生回国人数进行了统计,数据如下表:年份20142015201620172018年份代码12345留学生回国人数/万36.540.943.348.151.9根据上述统计数据求得留学生回国人数(单位:万)与年份代码满足的线性回归方程为,利用回归方程预测年留学生回国人数为()A.63.14万 B.64.72万C.66.81万 D.66.94万2.在直三棱柱中,,,则直线与所成角的大小为()A.30° B.60°C.120° D.150°3.为调查学生的课外阅读情况,学校从高二年级四个班的182人中随机抽取30人了解情况,若用系统抽样的方法,则抽样的间隔和随机剔除的个数分别为()A.6,2 B.2,3C.2,60 D.60,24.已知函数是区间上的可导函数,且导函数为,则“对任意的,”是“在上为增函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线:就是一条形状优美的曲线,对于此曲线,给出如下结论:①曲线围成的图形的面积是;②曲线上的任意两点间的距离不超过;③若是曲线上任意一点,则的最小值是其中正确结论的个数为()A. B.C. D.6.倾斜角为45°,在y轴上的截距为-1的直线方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=07.已知点是椭圆的左右焦点,椭圆上存在不同两点使得,则椭圆的离心率的取值范围是()A. B.C. D.8.公比为的等比数列,其前项和为,前项积为,满足,.则下列结论正确的是()A.的最大值为B.C.最大值为D.9.已知圆C的圆心在直线上,且与直线相切于点,则圆C方程为()A. B.C. D.10.圆的圆心坐标与半径分别是()A. B.C. D.11.阅读如图所示的程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.3212.早在古希腊时期,亚历山大的科学家赫伦就发现:光从一点直接传播到另一点选择最短路径,即这两点间的线段.若光从一点不是直接传播到另一点,而是经由一面镜子(即便镜面是曲面)反射到另一点,仍然选择最短路径.已知曲线,且将假设为能起完全反射作用的曲面镜,若光从点射出,经由上一点反射到点,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将某校全体高一年级学生期末数学成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图,现需要随机抽取60名学生进行问卷调查,采用按成绩分层随机抽样,则应抽取成绩不少于60分的学生人数为_______________.14.如图所示,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中,则点D到平面ACE的距离为________15.在中.若成公比为的等比数列,则____________16.在下列所示电路图中,下列说法正确的是____(填序号)(1)如图①所示,开关A闭合是灯泡B亮的充分不必要条件;(2)如图②所示,开关A闭合是灯泡B亮的必要不充分条件;(3)如图③所示,开关A闭合是灯泡B亮的充要条件;(4)如图④所示,开关A闭合是灯泡B亮的必要不充分条件三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知两个定点,,动点满足,设动点的轨迹为曲线,直线:(1)求曲线的轨迹方程;(2)若与曲线交于不同的、两点,且(为坐标原点),求直线的斜率;18.(12分)如图,四棱锥中,底面是边长为2的正方形,,,且,为的中点(1)求平面与平面夹角的余弦值;(2)在线段上是否存在点,使得点到平面的距离为?若存在,确定点的位置;若不存在,请说明理由19.(12分)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目设首项为2的数列的前n项和为,前n项积为,且(1)求数列的通项公式;(2)求的值20.(12分)已知点F是抛物线和椭圆的公共焦点,是与的交点,.(1)求椭圆的方程;(2)直线与抛物线相切于点,与椭圆交于,,点关于轴的对称点为.求的最大值及相应的.21.(12分)从①;②;③这三个条件中任选一个,补充在下面问题中,并作答设等差数列的前n项和为,,______;设数列的前n项和为,(1)求数列和的通项公式;(2)求数列的前项和注:作答前请先指明所选条件,如果选择多个条件分别解答,按第一个解答计分22.(10分)设全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”充分条件,求a的取值范围;(2)若“x∈A”是“x∈B”的必要条件,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求出样本点的中心,代入线性回归方程即可求出,再将代入线性回归方程即可得到结果【详解】由题意知:,,所以样本点的中心为,所以,解得:,可得线性回归方程为,年对应的年份代码为,令,则,所以预测2022年留学生回国人数为66.94万,故选:D.2、B【解析】根据三棱柱的特征补全为正方体,则,为直线与所成角,连接,则为等边三角形即可得解.【详解】根据直三棱柱的特征,补全可得如图所示的正方体,易知,为直线与所成角,连接,则为等边三角形,所以,所以直线与所成角的大小为.故选:B3、A【解析】根据系统抽样的方法即可求解.【详解】从人中抽取人,除以,商余,故抽样的间隔为,需要随机剔除人.故选:A.4、A【解析】根据充分条件与必要条件的概念,由导函数的正负与函数单调性之间关系,即可得出结果.【详解】因为函数是区间上的可导函数,且导函数为,若“对任意的,”,则在上为增函数;若在上为增函数,则对任意的恒成立,即由“对任意的,”能推出“在上为增函数”;由“在上为增函数”不能推出“对任意的,”,因此“对任意的,”是“在上为增函数”的充分不必要条件.故选:A5、C【解析】结合已知条件写出曲线的解析式,进而作出图像,对于①,通过图像可知,所求面积为四个半圆和一个正方形面积之和,结合数据求解即可;对于②,根据图像求出曲线上的任意两点间的距离的最大值即可判断;对于③,将问题转化为点到直线的距离,然后利用圆上一点到直线的距离的最小值为圆心到直线的距离减去半径即可求解.【详解】当且时,曲线的方程可化为:;当且时,曲线的方程可化为:;当且时,曲线的方程可化为:;当且时,曲线的方程可化为:,曲线的图像如下图所示:由上图可知,曲线所围成的面积为四个半圆的面积与边长为的正方形的面积之和,从而曲线所围成的面积,故①正确;由曲线的图像可知,曲线上的任意两点间的距离的最大值为两个半径与正方形的边长之和,即,故②错误;因为到直线的距离为,所以,当最小时,易知在曲线的第一象限内的图像上,因为曲线的第一象限内的图像是圆心为,半径为的半圆,所以圆心到的距离,从而,即,故③正确,故选:C.6、B【解析】由题意,,所以,即,故选B7、C【解析】先设点,利用向量关系得到两点坐标之间的关系,再结合点在椭圆上,代入方程,消去即得,根据题意,构建的齐次式,解不等式即得结果.【详解】设,由得,,,即,由在椭圆上,故,即,消去得,,根据椭圆上点满足,又两点不同,可知,整理得,故,故.故选:C.【点睛】关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到一组等量关系(齐次式),进而求解离心率或范围.8、A【解析】根据已知条件,判断出,即可判断选项D,再根据等比数列的性质,判断,,由此判断出选项A,B,C.【详解】根据题意,等比数列满足条件,,,若,则,则,,则,这与已知条件矛盾,所以不符合题意,故选项D错误;因为,,,所以,,,则,,数列前2021项都大于1,从第2022项开始都小于1,因此是数列中的最大值,故选项A正确由等比数列的性质,,故选项B不正确;而,由以上分析可知其无最大值,故C错误;故选:A9、C【解析】设出圆心坐标,根据垂直直线的斜率关系求得圆心坐标,结合两点距离公式得半径,即可得圆方程【详解】设圆心为,则圆心与点的连线与直线l垂直,即,则点,所以圆心为,半径,所以方程为,故选:C10、C【解析】将圆的一般方程化为标准方程,即可得答案.【详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.11、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C12、B【解析】记椭圆的右焦点为,根据椭圆定义,得到,由题中条件,确定本题的本质即是求的最小值,结合题中数据,即可求出结果.【详解】记椭圆的右焦点为,根据椭圆的定义可得,,所以,因为,当且仅当三点共线时,,即;由题意可得,求的值,即是求最短路径,即求的最小值,所以的最小值为,因此.故选:B.【点睛】思路点睛:求解椭圆上动点到一焦点和一定点距离和的最小值或差的最大值时,一般需要利用椭圆的定义,将问题转化为动点与另一焦点以及该定点距离和的最值问题来求解即可.二、填空题:本题共4小题,每小题5分,共20分。13、48【解析】根据频率分布直方图,求出成绩不少于分的频率,然后根据频数频率总数,即可求出结果【详解】根据频率分布直方图,成绩不低于(分)的频率为,由于需要随机抽取名学生进行问卷调查,利用样本估计总体的思想,则应抽取成绩不少于60分的学生人数为人故答案为:14、【解析】建立合适空间直角坐标系,分别表示出点的坐标,然后求解出平面的一个法向量,利用公式求解出点到平面的距离.【详解】以AB的中点O为坐标原点,分别以OE,OB所在的直线为x轴、y轴,过垂直于平面的方向为轴,建立如下图所示的空间直角坐标系,则,,设平面ACE的法向量,则,即,令,∴故点D到平面ACE的距离.故答案:.15、【解析】由条件可得,即,由余弦定理可得答案.【详解】由成公比为的等比数列,即由正弦定理可知所以故答案为:16、(1)(2)(3)【解析】充分不必要条件是该条件成立时,可推出结果,但结果不一定需要该条件成立;必要条件是有结果必须有这一条件,但是有这一条件还不够;充要条件是条件和结果可以互推;条件和结果没有互推关系的是既不充分也不必要条件【详解】(1)开关闭合,灯泡亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的充分不必要条件,选项(1)正确.(2)开关闭合,灯泡不一定亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的必要不充分条件,选项(2)正确.(3)开关闭合,灯泡亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的充要条件,选项(3)正确.(4)开关闭合,灯泡不一定亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的既不充分也不必要条件,选项(4)错误.故答案为(1)(2)(3).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)设点的坐标为,由,结合两点间的距离公式,列出式子,可求出轨迹方程;(2)易知,且,可求出到直线的距离,结合点到直线的距离为,可求出直线的斜率【详解】(1)设点的坐标为,由,可得,整理得,所以所求曲线的轨迹方程为(2)依题意,,且,在△中,,取的中点,连结,则,所以,即点到直线:的距离为,解得,所以所求直线斜率为【点睛】本题考查轨迹方程,考查直线的斜率,考查两点间的距离公式、点到直线的距离公式的应用,考查学生的计算求解能力,属于基础题.18、(1)(2)存在,点为线段的靠近点的三等分点【解析】(1)根据题意证得平面,进而证得平面,得到平面,以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,求得平面和平面的法向量,结合向量的夹角公式,即可求解;(2)设点,求得平面的法向量为,结合向量的距离公式列出方程,求得的值,即可得到答案.【小问1详解】解:因为四边形为正方形,则,,由,,,所以平面,因为平面,所以,又由,,,所以平面,又因为平面,所以,因为且平面,所以平面,由平面,且,不妨以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,如图所示,则,,,,可得,,,设平面的法向量为,则,取,可得,所以,易得平面的法向量为,则,由平面与平面夹角为锐角,所以平面与平面夹角的余弦值【小问2详解】解:设点,可得,,设平面的法向量为,则,取,可得,所以,所以点到平面的距离为,解得,即或因为,所以故当点为线段的靠近点的三等分点时,点到平面的距离为.19、(1)(2)【解析】(1)若选①可得,从而得到,即可得到是常数列,即可求出数列的通项公式;若选②,根据,作差即可得到,再利用累乘法计算可得;若选③:可得,即可得到数列是等差数列,首项为2,公差为1,从而求出数列的通项公式;(2)由(1)可得,利用裂项相消法计算可得;【小问1详解】解:选①:∵即∴即∴数列是常数列∴∴选②:∵∴时,则即∴∴当时,也满足,∴选③:因为,所以,所以数列是等差数列,首项为2,公差为1则∴【小问2详解】解:由(1)可得,∴20、(1);(2),.【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论