版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海大学市北附属中学高二数学第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点在抛物线:上,点为抛物线的焦点,,点P到y轴的距离为4,则抛物线C的方程为()A. B.C. D.2.已知满约束条件,则的最大值为()A.0 B.1C.2 D.33.过抛物线的焦点作直线l,交抛物线与A、B两点,若线段中点的纵坐标为3,则等于()A.10 B.8C.6 D.44.设,若,则()A. B.C. D.5.不等式的解集为()A. B.C.或 D.或6.已知双曲线的左、右焦点分别为,过点的直线与圆相切于点,交双曲线的右支于点,且点是线段的中点,则双曲线的渐近线方程为()A. B.C. D.7.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若018号被抽中,则下列编号也被抽中的是()A.076 B.122C.390 D.5228.已知双曲线的离心率为,则该双曲线的渐近线方程为()A. B.C. D.9.胡萝卜中含有大量的胡萝卜素,摄入人体消化器官后,可以转化为维生素,现从,两个品种的胡萝卜所含的胡萝卜素(单位:)得到茎叶图如图所示,则下列说法不正确的是A. B.的方差大于的方差C.品种的众数为 D.品种的中位数为10.若存在,使得不等式成立,则实数k的取值范围为()A. B.C. D.11.已知随机变量,,则的值为()A.0.24 B.0.26C.0.68 D.0.7612.某企业甲车间有200人,乙车间有300人,现用分层抽样的方法在这两个车间中抽取25人进行技能考核,则从甲车间抽取的人数应为()A.5 B.10C.8 D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则______14.已知点,是椭圆内的两个点,M是椭圆上的动点,则的最大值为______15.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,BB1的中点,G为棱A1B1上的一点,且A1G=(0<<2),则点G到平面D1EF的距离为____.16.有一组数据:,其平均数是,则其方差是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求的极值;(2)讨论的单调性18.(12分)已知双曲线(1)若,求双曲线的焦点坐标、顶点坐标和渐近线方程;(2)若双曲线的离心率为,求实数的取值范围19.(12分)设函数(1)若在处取得极值,求a的值;(2)若在上单调递减,求a的取值范围20.(12分)如图1,已知矩形ABCD,,,E,F分别为AB,CD的中点,将ABCD卷成一个圆柱,使得BC与AD重合(如图2),MNGH为圆柱的轴截面,且平面平面MNGH,NG与曲线DE交于点P(1)证明:平面平面MNGH;(2)判断平面PAE与平面PDH夹角与的大小,并说明理由21.(12分)已知抛物线的焦点也是椭圆的一个焦点,如图,过点任作两条互相垂直的直线,,分别交抛物线于,,,四点,,分别为,的中点.(1)求的值;(2)求证:直线过定点,并求出该定点的坐标;(3)设直线交抛物线于,两点,试求的最小值.22.(10分)已知动点M到点F(0,2)的距离,与点M到直线l:y=﹣2的距离相等.(1)求动点M的轨迹方程;(2)若过点F且斜率为1的直线与动点M的轨迹交于A,B两点,求线段AB的长度.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由抛物线定义可得,注意开口方向.详解】设∵点P到y轴的距离是4∴∵,∴.得:.故选:D.2、B【解析】作出给定不等式表示的平面区域,再借助几何意义即可求出的最大值.【详解】画出不等式组表示的平面区域,如图中阴影,其中,,目标函数,即表示斜率为2,纵截距为的平行直线系,作出直线,平移直线到直线,使其过点A时,的纵截距最小,最大,则,所以的最大值为1.故选:B3、B【解析】根据抛物线的定义求解【详解】抛物线的焦点为,准线方程为,设,则,所以,故选:B4、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【详解】因为,且,所以.所以,,所以.故选:B5、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A6、D【解析】焦点三角形问题,可结合为三角形的中位线,判断:焦点三角形为直角三角形,并且有,,可由勾股定理得出关系,从而得到关系,从而求得渐近线方程.【详解】由题意知,,且点是线段的中点,点是线段的中点,为三角形的中位线故,故,由双曲线定义有由勾股定理有故则则,故故渐近线方程为:故选:D【点睛】双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的关系7、B【解析】根据系统抽样的特点,写出组数与对应抽取编号的关系式,即可判断和选择.【详解】根据题意,780名公务员中,采用系统抽样的方法抽取30人,则需要分为组,每组人;设第组抽取的编号为,故可设,又第一组抽中号,故可得,解得故,当时,.故选:.8、C【解析】求得,由此求得双曲线的渐近线方程.【详解】离心率,则,所以渐近线方程.故选:C9、C【解析】读懂茎叶图,分别计算出众数、中位数、方差,然后对各选项进行判断【详解】由茎叶图知,品种所含胡萝卜素普遍高于品种,所以,故A正确;品种的数据波动比品种的数据波动大,所以的方差大于的方差,故B正确;品种的众数为与,故C错误;品种的数据的中位数为,故D正确.故选.【点睛】本题主要考查了对数据的分析,首先要读懂茎叶图,然后计算出众数、中位数、方差,即可对各选项进行判断,较为基础10、C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以f(x)>-3,所以.故选:C11、A【解析】根据给定条件利用正态分布的对称性计算作答.【详解】因随机变,,有P(ξ<4)=P(ξ≤4)=0.76,由正态分布的对称性得:,所以的值为0.24.故选:A12、B【解析】根据分层抽样的定义即可求解.【详解】从甲车间抽取的人数为人故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的定义求解即可【详解】由,得,所以,故答案为:14、##【解析】结合椭圆的定义求得正确答案.【详解】依题意,椭圆方程为,所以,所以是椭圆的右焦点,设左焦点为,根据椭圆的定义可知,,所以的最大值为.故答案为:15、【解析】先证明A1B1∥平面D1EF,进而将问题转化为求点A1到平面D1EF的距离,然后建立空间直角坐标系,通过空间向量的运算求得答案.【详解】由题意得A1B1∥EF,A1B1⊄平面D1EF,EF⊂平面D1EF,所以A1B1∥平面D1EF,则点G到平面D1EF的距离等于点A1到平面D1EF的距离.以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系D-xyz,则D1(0,0,2),E(2,0,1),F(2,2,1),A1(2,0,2),所以,,.设平面D1EF的法向量为,则,令x=1,则y=0,z=2,所以平面D1EF的一个法向量.点A1到平面D1EF的距离==,即点G到平面D1EF的距离为.故答案为:.16、2【解析】先按照平均数算出a,再按照方差的定义计算即可。【详解】∵,所以,方差,故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极小值为,无极大值(2)答案见解析【解析】(1)求出导函数,由得增区间,得减区间,从而得极值;(2)求出导函数,分类讨论确定和解得单调性小问1详解】当时,,(x>0)则令,得,得,得,所以的单调递减区间为;单调递增区间为.所以的极小值为f(2)=,无极大值.【小问2详解】令则当时,在上单调递减.当时,,得,,得;,得在上单调递减,在上单调递增,综上所述,当时,在上单调递减.当时,在上单调递减,在上单调递增.18、(1)焦点坐标为,,顶点坐标为,,渐近线方程为;(2).【解析】(1)根据双曲线方程确定,即可按照概念对应写出焦点坐标、顶点坐标和渐近线方程;(2)先求(用表示),再根据解不等式得结果.【详解】(1)当时,双曲线方程化为,所以,,,所以焦点坐标为,,顶点坐标为,,渐近线方程为.(2)因为,所以,解得,所以实数的取值范围是【点睛】本题根据双曲线方程求焦点坐标、顶点坐标和渐近线方程,根据离心率求参数范围,考查基本分析求解能力,属基础题.19、(1)(2)【解析】(1)对求导,再根据题意有,据此列式求出;(2)由题可知对恒成立,即对恒成立,因此求出在区间上的最小值即可得出结论.【详解】(1),则,因为在处取得极值,所以,解得,经检验,当时,在处取得极值;(2)因为在上单调递减,所以对恒成立,则对恒成立,∵当时,,∴,即a的取值范围为.【点睛】本题主要考查利用函数的单调性与极值求参,需要学生对相关基础知识牢固掌握且灵活运用.20、(1)证明见解析(2)平面PAE与平面PDH夹角大于,理由见解析【解析】(1)由面面垂直证明,然后得证平面MNGH后可得面面垂直;(2)建立如图所示的空间直角坐标系,用空间向量法求出二面角的余弦可得结论【小问1详解】如图O,为圆柱上,下底面的中心,可知,,平面平面MNGH,所以是二面角的平面角,平面平面MNGH,所以,即,,平面MNGH,所以平面MNGH,因为平面PAE,所以平面平面MNGH;【小问2详解】因为,所以得,如图,以为坐标原点,以,,所在直线为x,y,z轴建立空间直角坐标系,则可知,,,,,则,,,,设平面AEP的法向量为,则,令,得,设平面DHP的法向量为,则,即令,得,,设平面PAE与平面PDH夹角为,则,,因为,即,所以平面PAE与平面PDH夹角大于21、(1)(2)证明见解析,(3,0)(3)【解析】(1)求出椭圆的焦点坐标,从而可知抛物线的焦点坐标,进而可得的值;(2)首先设出直线的方程,联立直线与抛物线的方程,得到,坐标,令,可得直线过点,再证明当,,,三点共线即可;(3)设出的直线方程,联立直线与抛物线的方程,利用韦达定理找出根的关系,再利用两点间的距离公式求出最小值即可.【小问1详解】椭圆的焦点坐标为,由于抛物线的焦点也是椭圆的一个焦点,故,即,;小问2详解】由(1)知,抛物线的方程为,设,,,,由题意,直线的斜率存在且设直线的方程为,代入可得,则,故,故的中点坐标为,由,设直线的方程为,代入可得,则,故,可得的中点坐标为,令得,此时,故直线过点,当时,,所以,,,三点共线,所以直线过定点.【小问3详解】设,由题意直线的斜率存在,设直线的方程为,代入可得,则,,,故,当即直线垂直轴时,取得最小值.22、(1)x2=8y(2)16【解析】小问1:由抛物线的定义可求得动点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新版借款合同模板:担保人范本
- 2024年度农民工权益保障与就业援助合同3篇
- 2025青岛市机动车委托销售合同
- 2024ktv厨房食品安全承包管理服务协议2篇
- 木材店铺转让合同模板
- 2024版全职装卸工劳务协议3篇
- 100人入职河南事业单位2024年度招聘合同示范文本2篇
- 2024年口罩机技术开发合作协议2篇
- 小区场地转让合同模板
- 商铺铺位出租合同
- 2024年福建省厦门市市场监督管理局招聘50人历年高频难、易错点500题模拟试题附带答案详解
- 校园网络规划设计方案
- 高低压电气及成套设备装配工(中级)技能鉴定理论考试题库及答案
- 意识形态分析研判制度
- 《幂函数》说课稿
- 环境保护企业绿色发展技术创新
- 透析失衡综合征护理常规
- 2024高考数学艺体生一轮复习讲义-集合解析版
- 2024秋国家开放大学“开放本科”行管专业《管理英语4》期末考试真题12试
- 前程无忧行测笔试题库
- 统编版(2024年新教材)七年级上册语文第五单元学业质量测试卷(含答案)
评论
0/150
提交评论