版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省济宁邹城一中高二上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果,,那么直线不经过的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限2.若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”,下列椭圆中是“对偶椭圆”的是()A. B.C. D.3.若数列满足,则()A.2 B.6C.12 D.204.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;③回归直线就是散点图中经过样本数据点最多的那条直线;④如果两个变量的线性相关程度越高,则线性相关系数就越接近于;其中错误说法的个数是()A. B.C. D.5.过,两点的直线的一个方向向量为,则()A.2 B.2C.1 D.16.已知椭圆的左、右顶点分别为,上、下顶点分别为.点为上不在坐标轴上的任意一点,且四条直线的斜率之积大于,则的离心率的取值范围是()A. B.C. D.7.已知等差数列,,,则数列的前项和为()A. B.C. D.8.在区间内随机取一个数则该数满足的概率为()A. B.C. D.9.设为双曲线与椭圆的公共的左右焦点,它们在第一象限内交于点是以线段为底边的等腰三角形,若椭圆的离心率范围为,则双曲线的离心率取值范围是()A. B.C. D.10.已知命题p:,,则命题p的否定为()A., B.,C., D.,11.已知数列{}满足,则()A. B.C. D.12.已知{an}是以10为首项,-3为公差的等差数列,则当{an}的前n项和Sn,取得最大值时,n=()A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于A,B两点,若是等腰三角形,且,则的面积为___________.14.已知数列的前项和为,且满足,,则___________.15.已知为抛物线:的焦点,为抛物线上在第一象限的点.若为的中点,为抛物线的顶点,则直线斜率的最大值为______.16.若双曲线的渐近线与圆相切,则该双曲线的实轴长为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①成等差数列;②成等比数列;③这三个条件中任选一个,补充在下面的问题中,并对其求解.问题:已知为数列的前项和,,且___________.(1)求数列的通项公式;(2)记,求数列的前项和.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)为庆祝中国共产党成立100周年,某校举行了党史知识竞赛,在必答题环节,甲、乙两位选手分别从3道选择题(1)甲至少抽到1道填空题(2)甲答对的题数比乙多的概率.19.(12分)已知椭圆C的两焦点分别为,长轴长为6⑴求椭圆C的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度20.(12分)已知等差数列中,首项,公差,且数列的前项和为(1)求和;(2)设,求数列的前项和21.(12分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图22.(10分)已知数列满足,.(1)证明:数列为等差数列.(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】将直线化为,结合已知条件即可判断不经过的象限.【详解】由题设,直线可写成,又,,∴,,故直线过二、三、四象限,不过第一象限.故选:A.2、A【解析】由题意可得,所给的椭圆中的,的值求出的值,进而判断所给命题的真假【详解】解:因为椭圆短的轴两顶点恰好是旋转前椭圆的两焦点,即,即,中,,,所以,故,所以正确;中,,,所以,所以不正确;中,,,所以,所以不正确;中,,,所以,所以不正确;故选:3、D【解析】由已知条件变形可得,然后累乘法可得,即可求出详解】由得,,.故选:D4、C【解析】根据统计的概念逐一判断即可.【详解】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;对于②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;故②正确;对于③,线性回归方程必过样本中心点,回归直线不一定就是散点图中经过样本数据点最多的那条直线,也可能不过任何一个点;③不正确;对于④,如果两个变量的线性相关程度越高,则线性相关系数就越接近于,不正确,应为相关系数的绝对值就越接近于;综上,其中错误的个数是;故选:C.5、C【解析】应用向量的坐标表示求的坐标,由且列方程求y值.【详解】由题设,,则且,所以,即,可得.故选:C6、A【解析】设,求得,得到,求得,结合,即可求解.【详解】由椭圆的方程,可得,设,则,由,因为四条直线的斜率之积大于,即,所以,则离心率,又因为椭圆离心率,所以椭圆的离心率的取值范围是.故选:A.7、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.8、C【解析】求解不等式,利用几何概型的概率计算公式即可容易求得.【详解】求解不等式可得:,由几何概型的概率计算公式可得:在区间内随机取一个数则该数满足的概率为.故选:.9、A【解析】设椭圆的标准方程为,根据椭圆和双曲线的定义可得到两图形离心率之间的关系,再根据椭圆的离心率范围可得双曲线的离心率取值范围.【详解】设椭圆的标准方程为,,则有已知,两式相减得,即,,因为,解得故选:A.10、D【解析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系可得:命题“p:,”的否定式为“,”.故选:D.11、B【解析】先将通项公式化简然后用裂项相消法求解即可.【详解】因为,.故选:B12、B【解析】由题可得当时,,当时,,即得.【详解】∵{an}是以10为首项,-3为公差的等差数列,∴,故当时,,当时,,故时,取得最大值故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意可知,,再结合,即可求出各边,从而求出的面积【详解】,所以,而是的等腰三角形,所以,故的面积为故答案为:14、【解析】当时,,可得,可得数列隔项成等比数列,即所以数列的奇数项和偶数项分别是等比数列,分别求和,即可得解.【详解】因为,,所以,当时,,∴,所以数列的奇数项和偶数项分别是等比数列,所以.故答案为:.15、1【解析】由题意,可得,设,,,根据是线段的中点,求出的坐标,可得直线的斜率,利用基本不等式即可得结论【详解】解:由题意,可得,设,,,,是线段的中点,则,,,当且仅当时取等号,直线的斜率的最大值为1故答案为:116、【解析】由双曲线方程写出渐近线,根据相切关系,结合点线距离公式求参数a,即可确定实轴长.【详解】由题设,渐近线方程为,且圆心为,半径为1,所以,由相切关系知:,可得,又,即,所以双曲线的实轴长为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由可知数列是公比为的等比数列,若选①:结合等差数列等差中项的性质计算求解;若选②:利用等比数列等比中项的性质计算求解,若选③:利用直接计算;(2)根据对数的运算,可知数列为等差数列,直接求和即可.小问1详解】由,当时,,即,即,所以数列是公比为的等比数列,若选①:由,即,,所以数列的通项公式为;若选②:由,所以,所以数列的通项公式为;若选③:由,即,所以数列的通项公式为;【小问2详解】由(1)得,所以数列等差数列,所以.18、(1);(2).【解析】(1)把3道选择题(2)设,分别表示甲答对1道题,2道题的事件,,分别表示乙答对0道题,1道题的事件,分别求出它们的概率,甲答对的题数比乙多这个事件是,然后由相互独立的事件和互斥事件的概率公式计算【详解】解:(1)记3道选择题则试验的样本空间,.共有10个样本点,且每个样本点是等可能发生的,所以这是一个古典概型.记事件A=“甲至少抽到1道填空题,.所以,,.所以,.因此,甲至少抽到1道填空题(2)设,分别表示甲答对1道题,2道题的事件,分别表示乙答对0道题,1道题的事件,根据独立性假定,得,.,.记事件B=“甲答对的题数比乙多”,则,且,,两两互斥,与,与,与分别相互独立,所以..因此,甲答对的题数比乙多的概率为.19、(1);(2)【解析】(1)由焦点坐标可求c值,a值,然后可求出b的值.进而求出椭圆C的标准方程(2)先求出直线方程然后与椭圆方程联立利用韦达定理及弦长公式求出|AB|的长度【详解】解:⑴由,长轴长为6得:所以∴椭圆方程为⑵设,由⑴可知椭圆方程为①,∵直线AB的方程为②把②代入①得化简并整理得所以又【点睛】本题考查椭圆的方程和性质,考查韦达定理及弦长公式的应用,考查运算能力,属于中档题20、(1),;(2).【解析】(1)根据题意,结合等差数列的通项公式与求和公式,即可求解;(2)根据题意,求出,结合等差数列求和公式,即可求解.【小问1详解】根据题意,易知;.【小问2详解】根据题意,易知,因为,所以数列是首项为2,公差为的等差数列,故21、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解析】(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度更小②取每个小矩形的横坐标的中点乘以对应矩形的面积相加即得平均数.【详解】(1)由已知可得:抽样比,故类工人中应抽取:人,类工人中应抽取:人,(2)①由题意知,得,,得满足条件的频率分布直方图如下所示:从直方图可以判断:类工人中个体间的差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 墙板钉项目可行性研究报告
- 高分培优讲座 雪线和林线 高考第一轮地理复习课件
- 小班数学教案:抓老鼠
- 大数据在智慧医疗
- 2023-2024学年广东省深圳市盐田区六年级上学期期末英语试卷
- 一年级上册数学教案-第六单元第2课时 11~20各数的认识(2) 人教版
- 脚手架坍塌防范措施
- 急救药品、物品管理制度
- 第五单元《透镜及其应用》3.透镜的应用(分层训练)(解析版)
- 2.2享受学习-课时检测设计
- CJ/T 158-2002 城市污水处理厂管道和设备色标
- AQ/T 9009-2015 生产安全事故应急演练评估规范(正式版)
- 国家开放大学《心理学》形考任务1-4参考答案
- 乐山印象城市介绍旅游宣传PPT
- 国家开放大学《人文英语3》章节测试参考答案
- 浙江省计量检定收费标准
- 如何做好建筑施工企业法务管理工作(word版)
- 胃肠道CT三维重建(干货分享)
- 危险化学品生产单位从业人员培训正式(课堂PPT)
- 天然草原退牧还草工程人工饲草料基地建设项目工程施工总体规划及施工组织设计方案(可编辑)
- 市政道桥中级工程师答辩实务题
评论
0/150
提交评论