2025届青岛三中高二数学第一学期期末学业水平测试试题含解析_第1页
2025届青岛三中高二数学第一学期期末学业水平测试试题含解析_第2页
2025届青岛三中高二数学第一学期期末学业水平测试试题含解析_第3页
2025届青岛三中高二数学第一学期期末学业水平测试试题含解析_第4页
2025届青岛三中高二数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届青岛三中高二数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设拋物线的焦点为F,准线为l,P为拋物线上一点,,A为垂足.如果直线AF的斜率是,那么()A B.C.16 D.82.离心率为,长轴长为6的椭圆的标准方程是A. B.或C. D.或3.函数,的最小值为()A.2 B.3C. D.4.过抛物线的焦点F的直线l与抛物线交于PQ两点,若以线段PQ为直径的圆与直线相切,则()A.8 B.7C.6 D.55.在空间直角坐标系中,已知点A(1,1,2),B(-3,1,-2),则线段AB的中点坐标是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)6.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.7.已知正方形的四个顶点都在椭圆上,若的焦点F在正方形的外面,则的离心率的取值范围是()A. B.C. D.8.已知p:,那么p的一个充分不必要条件是()A. B.C. D.9.已知等比数列满足,,则()A. B.C. D.10.方程表示的曲线为()A.抛物线与一条直线 B.上半抛物线(除去顶点)与一条直线C.抛物线与一条射线 D.上半抛物线(除去顶点)与一条射线11.“﹣3<m<4”是“方程表示椭圆”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要12.已知双曲线的左、右焦点分别为,,过点作直线交双曲线的右支于A,B两点.若,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足,则__________.14.已知函数集合,若A中有且仅有4个元素,则满足条件的整数a的个数为______15.已知双曲线的左、右焦点分别为,双曲线左支上点满足,则的面积为_________16.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单,某外卖小哥每天来往于r个外卖店(外卖店的编号分别为1,2,…,r,其中),约定:每天他首先从1号外卖店取单,称为第1次取单,之后,他等可能的前往其余个外卖店中的任何一个店取单,称为第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的个外卖店取单.设事件表示“第k次取单恰好是从1号店取单()”,是事件发生的概率,显然,,则______,与的关系式为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,直线的极坐标方程为,曲线的参数方程是(是参数)(1)求直线的直角坐标方程及曲线的普通方程;(2)求曲线上的点到直线的距离的最大值18.(12分)已知直线l过点A(﹣3,1),且与直线4x﹣3y+t=0垂直(1)求直线l的一般式方程;(2)若直线l与圆C:x2+y2=m相交于点P,Q,且|PQ|=8,求圆C方程19.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3,直线与抛物线交于,两点,为坐标原点(1)求抛物线的方程;(2)求的面积.20.(12分)已知函数.(1)求的单调区间;(2)讨论的零点个数.21.(12分)求函数在区间上的最大值和最小值22.(10分)如图,在四棱锥中,平面平面,,,是边长为的等边三角形,是以为斜边的等腰直角三角形,点为线段的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题可得方程,进而可得点坐标及点坐标,利用抛物线定义即求【详解】∵抛物线方程为,∴焦点F(2,0),准线l方程为x=−2,∵直线AF的斜率为,直线AF的方程为,由,可得,∵PA⊥l,A为垂足,∴P点纵坐标为,代入抛物线方程,得P点坐标为,∴.故选:D.2、B【解析】试题解析:当焦点在x轴上:当焦点在y轴上:考点:本题考查椭圆的标准方程点评:解决本题的关键是焦点位置不同方程不同3、B【解析】求导函数,分析单调性即可求解最小值【详解】由,得,当时,,单调递减;当时,,单调递增∴当时,取得最小值,且最小值为故选:B.4、C【解析】依据抛物线定义可以证明:以过抛物线焦点F的弦PQ为直径的圆与其准线相切,则可以顺利求得线段的长.【详解】抛物线的焦点F,准线取PQ中点H,分别过P、Q、H作抛物线准线的垂线,垂足分别为N、M、E则四边形为直角梯形,为梯形中位线,由抛物线定义可知,,,则故,即点H到抛物线准线的距离为的一半,则以线段PQ为直径的圆与抛物线的准线相切.又以线段PQ为直径的圆与直线相切,则以线段PQ为直径的圆的直径等于直线与直线间的距离.即故选:C5、B【解析】利用中点坐标公式直接求解【详解】在空间直角坐标系中,点,1,,,1,,则线段的中点坐标是,,,1,故选:B.6、C【解析】设直线的倾斜角为,则,解方程即可.【详解】由已知,设直线的倾斜角为,则,又,所以.故选:C7、C【解析】如图由题可得,进而可得,即求.【详解】如图根据对称性,点D在直线y=x上,可设,则,∴,可得,,即,又解得.故选:C.8、C【解析】按照充分不必要条件依次判断4个选项即可.【详解】A选项:,错误;B选项:,错误;C选项:,,正确;D选项:,错误.故选:C.9、D【解析】由已知条件求出公比的平方,然后利用即可求解.【详解】解:设等比数列的公比为,因为等比数列满足,,所以,所以,故选:D.10、B【解析】化简得出或,由此可得出方程表示的曲线.【详解】由可得或,所以,方程表示的曲线为上半抛物线(除去顶点)与一条直线,故选:B.11、B【解析】求出方程表示椭圆的充要条件是且,由此可得答案.【详解】因为方程表示椭圆的充要条件是,解得且,所以“﹣3<m<4”是“方程表示椭圆”的必要不充分条件.故选:B【点睛】本题考查了由方程表示椭圆求参数的范围,考查了充要条件和必要不充分条件,本题易错点警示:漏掉,本题属于基础题.12、A【解析】根据给定条件结合双曲线定义求出,,再借助余弦定理求出半焦距c即可计算作答.【详解】因,令,,而双曲线实半轴长,由双曲线定义知,,而,于是可得,在等腰中,,令双曲线半焦距为c,在中,由余弦定理得:,而,,,解得,所以双曲线的离心率为.故选:A【点睛】方法点睛:求双曲线的离心率的方法:(1)定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;(2)齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;(3)特殊值法:通过取特殊值或特殊位置,求出离心率.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对递推关系多递推一次,再相减,可得,再验证是否满足;【详解】∵①时,②①-②得,时,满足上式,.故答案为:.【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.14、32【解析】作出的图像,由时,不等式成立,所以,判断出符合条件的非零整数根只有三个,即等价于时,;时,;利用数形结合,进行求解.【详解】作出的图像如图所示:因为时,不等式成立,所以,符合条件的非零整数根只有三个.由可得:时,;时,;所以在y轴左侧,的图像都在的下方;在y轴右侧,的图像都在的上方;而,,,,.平移直线,由图像可知:当时,集合A中除了0只含有1,2,3,符合题意,此时整数a可以取:-23,-22,-21……-9.一共15个;当时,集合A中除了0含有1,-1,-2,符合题意.当时,集合A中除了0只含有-1,-2,-3,符合题意,此时整数a可以取:5,6,7……20一共16个.所以整数a的值一共有15+1+16=32(个).故答案为:32【点睛】分离参数法求零点个数的问题是转化为,分别做出和的图像,观察交点的个数即为零点的个数.用数形结合法解决零点问题常有以下几种类型:(1)零点个数:几个零点;(2)几个零点的和;(3)几个零点的积.15、3【解析】由双曲线方程可得,利用双曲线定义,以及直角三角形的勾股定理可得,由此求得答案.【详解】由双曲线的左、右焦点分别为,双曲线左支上点满足,可得:,则,且,故,所以,故,故答案为:316、①.②.【解析】根据题意,结合条件概率的计算公式,即可求解.【详解】根据题意,事件表示“第3次取单恰好是从1号店取单”,因此;同理故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线的直角坐标方程是,曲线的普通方程是(2)【解析】(1)利用极坐标与直角坐标互化的公式进行求解,消去参数求出普通方程;(2)设曲线上任一点以,利用点到直线距离公式和辅助角公式进行求解.【小问1详解】因为,所以,即,将,代入,得直线的直角坐标方程是由得曲线的普通方程是【小问2详解】设曲线上任一点以,则点到直线的距离当时,,故曲线上的点到直线的距离的最大值为18、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直关系得过直线l的斜率,由点斜式化简即可求解l的一般式方程;(2)结合勾股定理建立弦心距(由点到直线距离公式求解),半弦长,圆半径的基本关系,解出,即可求解圆C的方程【小问1详解】因为直线l与直线4x﹣3y+t=0垂直,所以直线l的斜率为,故直线l的方程为,即3x+4y+5=0,因此直线l的一般式方程为3x+4y+5=0;【小问2详解】圆C:x2+y2=m的圆心为(0,0),半径为,圆心(0,0)到直线l的距离为,则半径满足m=42+12=17,即m=17,所以圆C:x2+y2=1719、(1);(2)【解析】(1)由题意可设抛物线的方程为y2=2px(p>0),运用抛物线的定义,可得23,解得p=2,进而得到抛物线的方程;(2)由题意,直线AB方程为y=x﹣1,与y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根与系数的关系和弦长公式,算出|AB|;利用点到直线的距离公式算出点O到直线AB的距离,即可求出△AOB的面积【详解】(1)抛物线C的顶点在原点,焦点在x轴上,且过一点P(2,m),可设抛物线的方程为y2=2px(p>0),P(2,m)到焦点的距离为3,即有P到准线的距离为6,即23,解得p=2,即抛物线的标准方程为y2=4x;(2)联立方程化简,得x2﹣6x+1=0设交点为A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8点O到直线l的距离d,所以△AOB的面积为S|AB|•d82【点睛】本题考查抛物线的方程的求法及抛物线定义的应用,考查待定系数法的运用,考查求焦点弦AB与原点构成的△AOB面积,属于中档题20、(1)单调递增区间是和,单调递减区间是(2)时,有1个零点;或时,有2个零点;时,有3个零点.【解析】(1)求解函数的导数,再运用导数求解函数的单调区间即可;(2)根据导数分析原函数的极值,进而讨论其零点个数.【详解】(1)因为,所以由,得或;由,得.故单调递增区间是和,单调递减区间是.(2)由(1)可知的极小值是,极大值是.①当时,方程有且仅有1个实根,即有1个零点;②当时,方程有2个不同实根,即有2个零点;③当时,方程有3个不同实根,即有3个零点;④当时,方程有2个不同实根,即有2个零点;⑤当时,方程有1个实根,即有1个零点.综上,当或时,有1个零点;当或时,有2个零点;当时,有3个零点.21、,【解析】先求导函数,再根据导函数得到单调区间,比较极值和端点值,即可得到最大值和最小值.【详解】解:依题意,,令,得或,所以函数在和上单调递增,在上单调递减,又,,,所以,22、(1)证明见解析;(2).【解析】(1)取的中点,连接,,证明两两垂直,如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论