广西桂林、梧州、贵港、玉林、崇左、北海2025届数学高二上期末监测试题含解析_第1页
广西桂林、梧州、贵港、玉林、崇左、北海2025届数学高二上期末监测试题含解析_第2页
广西桂林、梧州、贵港、玉林、崇左、北海2025届数学高二上期末监测试题含解析_第3页
广西桂林、梧州、贵港、玉林、崇左、北海2025届数学高二上期末监测试题含解析_第4页
广西桂林、梧州、贵港、玉林、崇左、北海2025届数学高二上期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西桂林、梧州、贵港、玉林、崇左、北海2025届数学高二上期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设实数,满足,则的最小值为()A.5 B.6C.7 D.82.不等式的一个必要不充分条件是()A. B.C. D.3.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系中,,点P满足,设点P的轨迹为C,下列结论正确的是()A.C的方程为B.当A,B,P三点不共线时,面积的最大值为24C.当A,B,P三点不共线时,射线是的角平分线D.在C上存在点M,使得4.在中,角、、的对边分别是、、,若.则的大小为()A. B.C. D.5.下列导数运算正确的是()A. B.C. D.6.方程表示的曲线是A.两条直线 B.两条射线C.两条线段 D.一条直线和一条射线7.在平面直角坐标系中,双曲线的右焦点为,过双曲线上一点作轴的垂线足为,若,则该双曲线的离心率为()A. B.C. D.8.已知,,,则,,的大小关系是A. B.C. D.9.动点P,Q分别在抛物线和圆上,则的最小值为()A. B.C. D.10.已知两条不同直线和平面,下列判断正确的是()A.若则 B.若则C.若则 D.若则11.已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆的离心率为()A. B.C. D.12.如图,D是正方体的一个“直角尖”O-ABC(OA,OB,OC两两垂直且相等)棱OB的中点,P是BC中点,Q是AD上的一个动点,连PQ,则当AC与PQ所成角为最小时,()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.若斜率为的直线与椭圆交于,两点,且的中点坐标为,则___________.14.直线l过抛物线的焦点F,与抛物线交于A,B两点,若,则直线l的斜率为______15.已知为等比数列的前n项和,若,,则_____________.16.狄利克雷是十九世纪德国杰出的数学家,对数论、数学分析和数学物理有突出贡献.狄利克雷曾提出了“狄利克雷函数”.若,根据“狄利克雷函数”可求___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在长方体ABCD-A1B1C1D1中,E,F分别是AB,A1C的中点,AD=AA1=2,AB=(1)求证:EF∥平面ADD1A1;(2)求平面EFD与平面DEC的夹角的余弦值;(3)在线段A1D1上是否存在点M,使得BM⊥平面EFD?若存在,求出的值;若不存在,请说明理由18.(12分)在中,角、、C所对的边分别为、、,,.(1)若,求的值;(2)若的面积,求,的值.19.(12分)在平面直角坐标系中,动点到直线的距离与到点的距离之差为.(1)求动点的轨迹的方程;(2)过点的直线与交于、两点,若的面积为,求直线的方程.20.(12分)如图,直三棱柱中,底面是边长为2的等边三角形,D为棱AC中点.(1)证明:AB1//平面;(2)若面B1BC1与面BC1D的夹角余弦值为,求.21.(12分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值22.(10分)已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】作出不等式组的可行域,利用目标函数的几何意义,利用数形结合的思想求解即可.【详解】画出约束条件的平面区域,如下图所示:目标函数可以化为,函数可以看成由函数平移得到,当直线经过点时,直线的截距最小,则,故选:2、B【解析】解不等式,由此判断必要不充分条件.【详解】,解得,所以不等式的一个必要不充分条件是.故选:B3、C【解析】根据题意可求出C的方程为,即可根据题意判断各选项的真假【详解】对A,由可得,化简得,即,A错误;对B,当A,B,P三点不共线时,点到直线的最大距离为,所以面积的最大值为,B错误;对C,当A,B,P三点不共线时,因为,所以射线是的角平分线,C正确;对D,设,由可得点的轨迹方程为,而圆与圆的圆心距为,两圆内含,所以这样的点不存在,D错误故选:C4、B【解析】利用余弦定理结合角的范围可求得角的值,再利用三角形的内角和定理可求得的值.【详解】因为,则,则,由余弦定理可得,因为,则,故.故选:B.5、B【解析】利用基本初等函数的导数和复合函数的导数,依次分析即得解【详解】选项A,,错误;选项B,,正确;选项C,,错误;选项D,,错误故选:B6、D【解析】由,得2x+3y−1=0或.即2x+3y−1=0(x⩾3)为一条射线,或x=4为一条直线.∴方程表示的曲线是一条直线和一条射线.故选D.点睛:在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线在求解方程时要注意变量范围.7、A【解析】根据条件可知四边形为正方形,从而根据边长相等,列式求双曲线的离心率.【详解】不妨设在第一象限,则,根据题意,四边形为正方形,于是,即,化简得,解得(负值舍去).故选:A.8、B【解析】若对数式的底相同,直接利用对数函数的性质判断即可,若底不同,则根据结构构造函数,利用函数的单调性判断大小【详解】对于的大小:,,明显;对于的大小:构造函数,则,当时,在上单调递增,当时,在上单调递减,即对于的大小:,,,故选B【点睛】将两两变成结构相同的对数形式,然后利用对数函数的性质判断,对于结构类似的,可以通过构造函数来来比较大小,此题是一道中等难度的题目9、B【解析】设,根据两点间距离公式,先求得P到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设,圆化简为,即圆心为(0,4),半径为,所以点P到圆心的距离,令,则,令,,为开口向上,对称轴为的抛物线,所以的最小值为,所以,所以的最小值为.故选:B10、D【解析】根据线线、线面、面面的平行与垂直的位置关系即可判断.【详解】解:对于选项A:若,则与可能平行,可能相交,可能异面,故选项A错误;对于选项B:若,则,故选项B错误;对于选项C:当时不满足,故选项C错误;综上,可知选项D正确.故选:D.11、B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.12、C【解析】根据题意,建立空间直角坐标系,求得AC与PQ夹角的余弦值关于点坐标的函数关系,求得角度最小时点的坐标,即可代值计算求解结果.【详解】根据题意,两两垂直,故以为坐标原点,建立空间直角坐标系如下所示:设,则,不妨设点的坐标为,则,,则,又,设直线所成角为,则,则,令,令,则,令,则,此时.故当时,取得最大值,此时最小,点,则,故,则故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】根据给定条件设出点A,B的坐标,再借助“点差法”即可计算得解.【详解】依题意,线段的中点在椭圆C内,设,,由两式相减得:,而,于是得,即,所以.故答案为:14、【解析】如图,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,利用在直角三角形中,求得,从而得出直线的斜率【详解】解:如图,当在第一象限时,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,由抛物线的定义可知:设,则,,,在直角三角形中,,所以,则直线的斜率;当在第四象限时,同理可得,直线的斜率,综上可得直线l的斜率为;故答案为:15、30【解析】根据等比数列性质得,,也成等比,即可求得结果.【详解】由等比数列的性质可知,,,构成首项为10,公比为1的等比数列,所以【点睛】本题考查等比数列性质,考查基本求解能力,属基础题.16、1【解析】由“狄利克雷函数”解析式,先求出,再根据指数函数的解析式求即可.【详解】由题设,,则.故答案:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)不存在;理由见解析【解析】(1)连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO,根据判定定理证明四边形AEFO是平行四边形,进而得到线面平行;(2)建立坐标系,求出两个面的法向量,求得两个法向量的夹角的余弦值,进而得到二面角的夹角的余弦值;(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD,设出点M的坐标,由第二问得到平面EFD的一个法向量,判断出和该法向量不平行,故不存在满足题意的点M.【详解】(1)证明:连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO因为F是A1C的中点,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四边形AEFO是平行四边形所以EF∥AO因为EF⊄平面ADD1A1,AO⊂平面ADD1A1,所以EF∥平面ADD1A1(2)以点A为坐标原点,直线AB,AD,AA1分别为x轴,y轴,z轴建立空间直角坐标系,因为点E,F分别是AB,A1C的中点,AD=AA1=2,AB=,所以B(,0,0),D(0,2,0),E,F所以=,=(0,1,1)设平面EFD的法向量为,则即令y=1,则z=-1,x=2所以,由题知,平面DEC的一个法向量为m=(0,0,1),所以cos<,>==所以平面EFD与平面DEC的夹角的余弦值是(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD设点M的坐标为(0,t,2)(0≤t≤2),则=(,t,2)因为平面EFD的一个法向量为,而与不平行,所以在线段A1D1上不存在点M,使得BM⊥平面EFD18、(1)(2),【解析】(1)根据同角三角函数的基本关系求解的值,再结合正弦定理求解即可;(2)根据三角形的面积可求解出边c的值,再运用余弦定理求解边b.【详解】(1),且,.由正弦定理得,.(2),.由余弦定理得,.19、(1);(2)或.【解析】(1)本题首先可以设动点,然后根据题意得出,通过化简即可得出结果;(2)本题首先可排除直线斜率不存在时情况,然后设直线方程为,通过联立方程并化简得出,则,,再然后根据得出,最后根据的面积为即可得出结果.【详解】(1)设动点,因为动点到直线的距离与到点的距离之差为,所以,化简可得,故轨迹方程为.(2)当直线斜率不存在时,其方程为,此时,与只有一个交点,不符合题意,当直线斜率存在时,设其方程为,联立方程,化简得,,令、,则,,因为,所以,因为的面积为,所以,解得或,故直线方程为:或.【点睛】本题考查动点的轨迹方程的求法以及抛物线与直线相交的相关问题的求解,能否根据题意列出等式是求动点的轨迹方程的关键,考查韦达定理的应用,在计算时要注意斜率为这种情况,考查计算能力,考查转化与化归思想,是中档题.20、(1)证明见解析(2)【解析】(1)连接,使,连接,即可得到,从而得证;(2)设,以为坐标原点建立空间直角坐标系,求出平面的法向量,平面的法向量,利用空间向量的数量积求解面与面的夹角余弦值为,从而得到方程,解得即可【小问1详解】证明:如图,连,使,连,由直三棱柱,所以四边形为矩形,所以为中点,在中,、分别为和中点,,又因平面平面,面,面,平面【小问2详解】解:设,以为坐标原点如图建系,则,,所以、,设平面的法向量则,故可取设平面的法向量,则,故可取,因为面与面的夹角余弦值为,所以,即,解得,21、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判定定理证明平面ABD即可;(2)以A为原点,分别以,,方向为x轴,y轴,z轴的正方向的空间直角坐标系,分别求得平面BCD的一个法向量和平面DCM的一个法向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论