版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海高中2025届高一数学第一学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点个数是A.0 B.1C.2 D.32.设函数在区间上为偶函数,则的值为()A.-1 B.1C.2 D.33.已知定义在上的奇函数满足当时,,则关于的函数,()的所有零点之和为()A. B.C. D.4.已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的最大值是A.1 B.C. D.5.已知集合,区间,则=()A. B.C. D.6.函数部分图象如图所示,则下列结论错误的是()A.频率为 B.周期为C.振幅为2 D.初相为7.已知角的顶点与原点重合,始边与轴的非负半轴重合,若它的终边经过点,则()A. B.C. D.8.若sin(),α是第三象限角,则sin()=()A. B.C. D.9.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行10.已知,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算,可得其中一个零点x0∈(0,1),那么经过下一次计算可得x0∈___________(填区间).12.下列五个结论:集合2,3,4,5,,集合,若f:,则对应关系f是从集合A到集合B的映射;函数的定义域为,则函数的定义域也是;存在实数,使得成立;是函数的对称轴方程;曲线和直线的公共点个数为m,则m不可能为1;其中正确有______写出所有正确的序号13.半径为2cm,圆心角为的扇形面积为.14.已知偶函数,x∈R,满足f(1-x)=f(1+x),且当0<x<1时,f(x)=ln(x+),e为自然数,则当2<x<3时,函数f(x)的解析式为______15.设集合,,则_________16.已知函数,则的值是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的单调递增区间;(2)设,已知,求的值.18.已知函数.(1)求方程在上的解;(2)求证:对任意的,方程都有解19.在平面直角坐标系中,已知角α的始边为x轴的非负半轴,终边经过点P(-,)(Ⅰ)求cos(α-π)的值;(Ⅱ)若tanβ=2,求的值20.已知函数.(1)当时,求该函数的值域;(2)若,对于恒成立,求实数m的取值范围.21.已知.(1)化简;(2)若是第三象限角,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】将原问题转化为函数交点个数的问题即可确定函数的零点个数.【详解】函数的零点个数即函数与函数交点的个数,绘制函数图象如图所示,观察可得交点个数为2,则函数的零点个数是2.本题选择C选项.【点睛】本题主要考查函数零点的定义,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.2、B【解析】由区间的对称性得到,解出b;利用偶函数,得到,解出a,即可求出.【详解】因为函数在区间上为偶函数,所以,解得又为偶函数,所以,即,解得:a=-1.所以.故选:B3、B【解析】作函数与的图象,从而可得函数有5个零点,设5个零点分别为,从而结合图象解得【详解】解:作函数与的图象如下,结合图象可知,函数与的图象共有5个交点,故函数有5个零点,设5个零点分别为,∴,,,故,即,故,故选B【点睛】本题考查了函数零点与函数的图象的关系应用及数形结合的思想应用,属于常考题型.4、D【解析】根据题意,函数f(x)是定义在R上的偶函数,则=,又由f(x)区间(﹣∞,0)上单调递增,则f(x)在(0,+∞)上递减,则f(32a﹣1)⇔f(32a﹣1)⇔32a﹣1<⇔32a﹣1,则有2a﹣1,解可得a,即的最大值是,故选:D.5、D【解析】利用交集的运算律求【详解】∵,,∴.故选:D.6、A【解析】根据图象可得、,然后利用求出即可.【详解】由图可知,C正确;,则,,B正确;,A错误;因为,则,即,又,则,D正确故选:A7、D【解析】利用定义法求出,再用二倍角公式即可求解.【详解】依题意,角的终边经过点,则,于是.故选:D8、C【解析】由α是第三象限角,且sin(),可得为第二象限角,即可得,然后结合,利用两角和的正弦公式展开运算即可.【详解】解:因为α是第三象限角,则,又sin(),所以,即为第二象限角,则,则,故选:C.【点睛】本题考查了角的拼凑,重点考查了两角和的正弦公式,属基础题.9、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.10、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据零点存在性定理判断零点所在区间.【详解】,,所以下一次计算可得.故答案为:12、【解析】由,,结合映射的定义可判断;由由,解不等式可判断;由辅助角公式和正弦函数的值域,可判断;由正弦函数的对称轴,可判断;由的图象可判断交点个数,可判断【详解】由于,,B中无元素对应,故错误;函数的定义域为,由,可得,则函数的定义域也是,故正确;由于的最大值为,,故不正确;由为最小值,是函数的对称轴方程,故正确;曲线和直线的公共点个数为m,如图所示,m可能为0,2,3,4,则m不可能为1,故正确,故答案为【点睛】本题主要考查函数的定义域、值域和对称性、图象交点个数,考查运算能力和推理能力,属于基础题13、【解析】求出扇形的弧长,利用扇形面积公式求解即可.【详解】因为半径为,圆心角为的扇形,弧长为,所以扇形面积为:故答案为.【点睛】本题考查扇形的面积公式的应用,考查计算能力,属于基础题.14、【解析】由f(1-x)=f(1+x),再由偶函数性质得到函数周期,再求当2<x<3时f(x)解析式【详解】因为f(x)是偶函数,满足f(1-x)=f(1+x),所以f(1+x)=f(x-1),所以f(x)周期是2当2<x<3时,0<x-2<1,所以f(x-2)=ln(x-2+)=f(x),所以函数f(x)的解析式为f(x)=ln(x-2+)故答案为f(x)=ln(x-2+)【点睛】本题主要考查函数的奇偶性,考查利用函数的周期性求解析式,意在考查学生对这些知识的理解掌握水平和分析推理能力.15、【解析】根据集合的交集的概念得到.故答案为16、-1【解析】利用分段函数的解析式,代入即可求解.【详解】解:因为,则.故答案为:-1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据降幂公式、二倍角的正弦公式、辅助角公式,结合正弦型函数的单调性进行求解即可;(2)利用代入法,根据同角的三角函数关系式,结合两角差的正弦公式进行求解即可.【小问1详解】,当时,函数单调递增,即,所以函数的单调递增区间为;【小问2详解】由,因为,所以,而,所以,于是有,18、(1)或;(2)证明见解析【解析】(1)根据诱导公式和正弦、余弦函数的性质可得答案;(2)令,分,,三种情况,分别根据零点存在定理可得证.【详解】解:(1)由,得,所以当时,上述方程的解为或,即方程在上的解为或;(2)证明:令,则,①当时,,令,则,即此时方程有解;②当时,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解;③当时,,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解.综上,对任意的,方程都有解19、(I);(II).【解析】由任意角三角函数的定义可得,,(Ⅰ)可求(Ⅱ)有,,利用诱导公式及同角基本关系即可化简求解【详解】解:由题意可得cosα=,sin,(Ⅰ)cos(α-π)=-cosα=,(Ⅱ)∵tanβ=2,tanα=,∴====【点睛】本题主要考查了三角函数的定义,同角基本关系的基本应用,属于基础试题.20、(1)(2)【解析】(1)令,可得,利用二次函数的性质即可求出;(2)令,可得在上恒成立,求出的最大值即可.【小问1详解】令,,则,函数转化为,,则二次函数,,当时,,当时,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《NOIP图的基础算法》课件
- 价值观培训班
- 农药采购合同模板
- 白血病捐款班会
- 仁爱版英语初二八年级上册全册教案
- 2024年度航空公司机队更新与租赁合同3篇
- 仁爱版英语七年级上册教案设计
- 2024年度房产购房合同(标的:杭州市江干区套别墅)3篇
- 治疗性沟通实践报告
- 《新风培训》课件
- 妊娠期高血压疾病的护理课件
- 小区物业消防安全职责与日常检查
- 施工现场危险源辨识及风险评价表
- 烟草专卖许可证新办申请表(国)
- 玩转计算机网络-计算机网络原理智慧树知到课后章节答案2023年下青岛大学
- 安全隐患排查台账(附排查表)
- 核安全工程师-核安全综合知识-辐射防护基础-辐射防护剂量限值
- 音乐治疗学基础理论
- 小学二年级期中家长会课件
- 第六届大学生化学实验技能竞赛初赛笔试试题
- 质量通病防治施工措施及质量通病防治措施
评论
0/150
提交评论