![陕西省西安电子科技大学附属中学2025届高一数学第一学期期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view8/M02/1F/23/wKhkGWcfw82AQ2JAAAF8JixICfU935.jpg)
![陕西省西安电子科技大学附属中学2025届高一数学第一学期期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view8/M02/1F/23/wKhkGWcfw82AQ2JAAAF8JixICfU9352.jpg)
![陕西省西安电子科技大学附属中学2025届高一数学第一学期期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view8/M02/1F/23/wKhkGWcfw82AQ2JAAAF8JixICfU9353.jpg)
![陕西省西安电子科技大学附属中学2025届高一数学第一学期期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view8/M02/1F/23/wKhkGWcfw82AQ2JAAAF8JixICfU9354.jpg)
![陕西省西安电子科技大学附属中学2025届高一数学第一学期期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view8/M02/1F/23/wKhkGWcfw82AQ2JAAAF8JixICfU9355.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安电子科技大学附属中学2025届高一数学第一学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数为奇函数,则()A.-1 B.0C.1 D.22.“是”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分又不必要3.计算:()A.0 B.1C.2 D.34.下列四个函数中,以为最小正周期,且在区间上为减函数的是A. B.C. D.5.()A B.C. D.6.已知某扇形的面积为,圆心角为,则该扇形的半径为()A.3 B.C.9 D.7.设,满足约束条件,则的最小值与最大值分别为()A., B.2,C.4,34 D.2,348.下列函数中,既是偶函数又在上是单调递增的函数是()A. B.C. D.9.已知函数f(x)=设f(0)=a,则f(a)=()A.-2 B.-1C. D.010.设a,b,c均为正数,且,,,则a,b,c的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.圆关于直线的对称圆的标准方程为___________.12.已知函数是定义在上的奇函数,当时,,则__________.13.若角的终边经过点,则___________.14.已知函数的图象与函数及函数的图象分别交于两点,则的值为__________15.已知函数,,对,用表示,中的较大者,记为,则的最小值为______.16.已知函数,若函数恰有两个不同的零点,则实数的取值范围是_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象在定义域上连续不断.若存在常数,使得对于任意的,恒成立,称函数满足性质.(1)若满足性质,且,求的值;(2)若,试说明至少存在两个不等的正数,同时使得函数满足性质和.(参考数据:)(3)若函数满足性质,求证:函数存在零点.18.已知函数.求函数的值域19.如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.(1)求证:DE平面ABC;(2)求证:B1C⊥平面BDE.20.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积21.如图,在中,已知为线段上的一点,.(1)若,求的值;(2)若,,,且与的夹角为时,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用函数是奇函数得到,然后利用方程求解,,则答案可求【详解】解:函数为奇函数,当时,,所以,所以,,故故选:C.2、A【解析】根据充分必要条件的定义判断【详解】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x=1或x=3,不是必要条件.故选:A.3、B【解析】根据指数对数恒等式及对数的运算法则计算可得;【详解】解:;故选:B4、A【解析】最小正周期,且在区间上为减函数,适合;最小正周期为,不适合;最小正周期为,在区间上不单调,不适合;最小正周期为,在区间上为增函数,不适合.故选A5、A【解析】由根据诱导公式可得答案.【详解】故选:A6、A【解析】根据扇形面积公式求出半径.【详解】扇形的面积,解得:故选:A7、D【解析】画出约束条件表示的可行域,通过表达式的几何意义,判断最大值与最小值时的位置求出最值即可【详解】解:由,满足约束条件表示的可行域如图,由,解得的几何意义是点到坐标原点的距离的平方,所以的最大值为,的最小值为:原点到直线的距离故选D【点睛】本题考查简单的线性规划的应用,表达式的几何意义是解题的关键,考查计算能力,属于常考题型.8、B【解析】根据函数奇偶性和单调性之间的关系,即可得到结论.【详解】根据函数奇偶性和单调性,A,(0,+∞)上是单调递减,错误B,偶函数,(0,+∞)上是递增,正确.C,奇函数,错误,D,x>0时,(0,+∞)上是函数递减,错误,故选:B.【点睛】根据函数奇偶性和单调性之间的关系是解决本题的关键9、A【解析】根据条件先求出的值,然后代入函数求【详解】,即,故选:A10、C【解析】将分别看成对应函数的交点的横坐标,在同一坐标系作出函数的图像,数形结合可得答案.【详解】在同一坐标系中分别画出,,的图象,与的交点的横坐标为,与的图象的交点的横坐标为,与的图象的交点的横坐标为,从图象可以看出故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题12、12【解析】由函数的奇偶性可知,代入函数解析式即可求出结果.【详解】函数是定义在上的奇函数,,则,.【点睛】本题主要考查函数的奇偶性,属于基础题型.13、【解析】根据三角函数的定义求出和的值,再由正弦的二倍角公式即可求解.【详解】因为角的终边经过点,所以,,则,所以,,所以,故答案为:.14、【解析】利用函数及函数的图象关于直线对称可得点在函数的图象上,进而可得的值【详解】由题意得函数及函数的图象关于直线对称,又函数的图象与函数及函数的图象分别交于两点,所以,从而点的坐标为由题意得点在函数的图象上,所以,所以故答案为4【点睛】解答本题的关键有两个:一是弄清函数及函数的图象关于直线对称,从而得到点也关于直线对称,进而得到,故得到点的坐标为;二是根据点在函数的图象上得到所求值.考查理解和运用能力,具有灵活性和综合性15、【解析】作出函数的图象,结合图象即可得的最小值.【详解】如图,在同一直角坐标系中分别作出函数和的图象,因为对,,故函数的图象如图所示:由图可知,当时,函数取得最小值.故答案为:.16、【解析】题目转化为,画出函数图像,根据图像结合函数值计算得到答案.详解】,,即,画出函数图像,如图所示:,,根据图像知:.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析(3)证明见解析【解析】(1)由满足性质可得恒成立,取可求,取可求,取可求,取求,由此可求的值;(2)设满足,利用零点存在定理证明关于的方程至少有两个解,证明至少存在两个不等的正数,同时使得函数满足性质和;(3)分别讨论,,时函数的零点的存在性,由此完成证明.【小问1详解】因为满足性质,所以对于任意的x,恒成立.又因为,所以,,,由可得,由可得,所以,.【小问2详解】若正数满足,等价于,记,显然,,因为,所以,,即.因为的图像连续不断,所以存在,使得,因此,至少存在两个不等的正数,使得函数同时满足性质和.【小问3详解】若,则1即为零点;因为,若,则,矛盾,故,若,则,,,可得.取即可使得,又因为的图像连续不断,所以,当时,函数上存在零点,当时,函数在上存在零点,若,则由,可得,由,可得,由,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,综上,函数存在零点.18、【解析】将化为,分和分别应用均值不等式可得答案.【详解】解:,当时,,当且仅当,即时取等号;当时,,当且仅当,即时取等号综上所述,的值域为19、(1)证明过程见解析;(2)证明过程见解析.【解析】(1)根据面面平行的判定定理,结合线面平行的判定定理、面面平行的性质进行证明即可;(2)根据正三棱柱的几何性质,结合面面垂直的性质定理、线面垂直的判定定理、面面平行的性质定理进行证明即可.【小问1详解】设G是CC1的中点,连接,因为E为B1C的中点,所以,而,所以,因为平面ABC,平面ABC,所以平面ABC,同理可证平面ABC,因为平面,且,所以面平面ABC,而平面,所以DE平面ABC;【小问2详解】设是的中点,连接,因为E为B1C的中点,所以,而,所以,由(1)可知:面平面ABC,平面平面,平面平面,因此,在正三棱柱ABC-A1B1C1中,平面平面ABC,而平面平面ABC,因为ABC是正三角形,是的中点,所以,因此平面,而平面,因此,而,所以,因为正三棱柱ABC-A1B1C1中棱长都相等,所以,而E分别为B1C的中点,所以,而平面BDE,,所以B1C⊥平面BDE.20、(1)或(2)【解析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联立得中点的坐标,,解方程得直线方程,再求三角形面积即可.【小问1详解】解:若直线l的斜率不存在,则l的方程为,此时直线l与圆O相切,符合题意;若直线l的斜率存在,设直线l的方程为,因为直线l与圆O相切,所以圆心(0,0)到l的距离为2,即,解得,所以直线l的方程为,即故直线l的方程为或【小问2详解】解:设直线l的方程为,因为直线l与圆O相交,所以结合(1)得联立方程组消去y得,设,则,设中点,,①代入直线l的方程得,②解得或(舍去)所以直线l的方程为因为圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑规划保安工作计划
- 航空领域保安工作的创新计划
- 会计信息与决策的关系探讨计划
- 2025年媒体经营项目建议书
- 2025年中国夜游经济行业供需态势、竞争格局及投资前景分析报告(智研咨询)
- 2025年超硬材料项目合作计划书
- 2025年特种大型铝合金型材项目发展计划
- 构建直观易用的用户操作面板
- 2025年子宫收缩药项目发展计划
- 病人入住ICU的流程
- 2025年春新外研版(三起)英语三年级下册课件 Unit5第1课时Startup
- 2025年春新外研版(三起)英语三年级下册课件 Unit1第2课时Speedup
- 2024年石柱土家族自治县中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 西藏事业单位c类历年真题
- 生物新教材培训的心得体会
- 上海市2024年中考英语试题及答案
- 临床患者体位管理
- 2025中国移动安徽分公司春季社会招聘高频重点提升(共500题)附带答案详解
- 砂光机培训课件
- 七年级英语下学期开学考试(深圳专用)-2022-2023学年七年级英语下册单元重难点易错题精练(牛津深圳版)
- 米酒的制作流程
评论
0/150
提交评论