江苏扬州市梅岭中学2025届九年级数学第一学期开学经典试题【含答案】_第1页
江苏扬州市梅岭中学2025届九年级数学第一学期开学经典试题【含答案】_第2页
江苏扬州市梅岭中学2025届九年级数学第一学期开学经典试题【含答案】_第3页
江苏扬州市梅岭中学2025届九年级数学第一学期开学经典试题【含答案】_第4页
江苏扬州市梅岭中学2025届九年级数学第一学期开学经典试题【含答案】_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第6页,共6页江苏扬州市梅岭中学2025届九年级数学第一学期开学经典试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.1.5,2,2.5 D.1,,32、(4分)菱形具有而矩形不具有的性质是()A.对角线互相平分 B.四条边都相等C.对角相等 D.邻角互补3、(4分)在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(

)A.5 B.7 C.9 D.114、(4分)下列哪个点在函数的图象上()A. B. C. D.5、(4分)如图,□ABCD的对角线相交于点O,下列式子不一定正确的是()A.AC=BD B.AB=CD C.∠BAD=∠BCD D.AO=CO6、(4分)下列说法是8的立方根;是64的立方根;是的立方根;的立方根是,其中正确的说法有个.A.1 B.2 C.3 D.47、(4分)一次函数的图象经过第二、三、四象限,则化简所得的结果是()A. B. C. D.8、(4分)若关于的分式方程的根是正数,则实数的取值范围是().A.,且 B.,且C.,且 D.,且二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是_____.10、(4分)如图,在射线OA、OB上分别截取OA1、OB1,使OA1OB1;连接A1B1,在B1A1、B1B上分别截取B1A2、B1B2,使B1A2B1B2,连接A2B2;……依此类推,若A1B1O,则A2018B2018O=______________________.11、(4分)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是_____.12、(4分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.13、(4分)若已知a,b为实数,且=b﹣1,则a+b=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于F,且BF=AC,FD=CD,AD=3,求AB的长.15、(8分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=_____,b=_____.(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.16、(8分)图中折线ABC表示从甲地向乙地打长途电话时所需付的电话费y(元)与通话时间t(分钟)之间的关系图象.(1)从图象知,通话2分钟需付的电话费是元;(2)当t≥3时求出该图象的解析式(写出求解过程);(3)通话7分钟需付的电话费是多少元?17、(10分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.(1)求6年1班40人一分钟内平均每人跳绳多少个?(2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?18、(10分)某校名学生参加植树活动,要求每人植棵,活动结束后随机抽查了名学生每人的植树量,并分为四种类型,:棵;;棵;:棵,:棵。将各类的人绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误。回答下列问题:(1)写出条形图中存在的错误,并说明理由.(2)写出这名学生每人植树量的众数、中位数.(3)在求这名学生每人植树量的平均数.(4)估计这名学生共植树多少棵.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)关于x的方程有两个实数根,则符合条件的一组的实数值可以是b=______,c=______.20、(4分)如图,在中,,,,将折叠,使点与点重合,得到折痕,则的周长为_____.21、(4分)若a≠b,且a2﹣a=b2﹣b,则a+b=__.22、(4分)如图,反比例函数与正比例函数和的图像分别交于点A(2,2)和B(b,3),则关于x的不等式组的解集为___________。23、(4分)一个n边形的内角和为1080°,则n=________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在菱形ABCD中,AD∥x轴,点A的坐标为(0,4),点B的坐标为(3,0).CD边所在直线y1=mx+n与x轴交于点C,与双曲线y2=(x<0)交于点D.(1)求直线CD对应的函数表达式及k的值.(2)把菱形ABCD沿y轴的正方向平移多少个单位后,点C落在双曲线y2=(x<0)上?(3)直接写出使y1>y2的自变量x的取值范围.25、(10分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为个单位长度的正方形).(1)将沿轴方向向左平移个单位,画出平移后得到的;(2)将绕着点顺时针旋转,画出旋转后得到的.26、(12分)某项工程由甲乙两队分别单独完成,则甲队用时是乙队的1.5倍:若甲乙两队合作,则需12天完成,请问:(1)甲,乙两队单独完成各需多少天;(2)若施工方案是甲队先单独施工天,剩下工程甲乙两队合作完成,若甲队施工费用为每天1.5万元,乙队施工费为每天3.5万元求施工总费用(万元)关于施工时间(天)的函数关系式(3)在(2)的方案下,若施工期定为15~18天内完成(含15和18天),如何安排施工方案使费用最少,最少费用为多少万元?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、22+32=13≠42,不可以构成直角三角形,故B选项错误;C、1.52+22=6.25=2.52,可以构成直角三角形,故C选项正确;D、,不可以构成直角三角形,故D选项错误.故选:C.本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2、B【解析】

解:菱形的对角线互相垂直平分,四条边都相等,对角相等,邻角互补;矩形的对角线互相平分且相等,对边相等,四个角都是90°.菱形具有而矩形不具有的性质是:四条边都相等,故选B3、B【解析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.4、C【解析】

分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数的图象上,(2,0)也不在函数的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数的图象上,(−2,0)在函数的图象上.故选:C.本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.5、A【解析】

根据平行四边形的性质逐项判断即可得.【详解】A、平行四边形的对角线不一定相等,则不一定正确,此项符合题意B、平行四边形的两组对边分别相等,则一定正确,此项不符题意C、平行四边形的两组对角分别相等,则一定正确,此项不符题意D、平行四边形的两对角线互相平分,则一定正确,此项不符题意故选:A.本题考查了平行四边形的性质,熟记平行四边形的性质是解题关键.6、C【解析】

根据立方根的概念即可求出答案.【详解】①2是8的立方根,故①正确;②4是64的立方根,故②错误;③是的立方根,故③正确;④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确.故选C.本题考查了立方根的概念,解题的关键是正确理解立方根的概念,本题属于基础题型.7、D【解析】

根据题意可得﹣m<0,n<0,再进行化简即可.【详解】∵一次函数y=﹣mx+n的图象经过第二、三、四象限,∴﹣m<0,n<0,即m>0,n<0,∴=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.8、D【解析】分析:利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.详解:方程两边同乘1(x﹣1)得:m=1(x-1)﹣4(x-1),解得:x=.∵≠1,∴m≠1,由题意得:>0,解得:m<6,实数m的取值范围是:m<6且m≠1.故选D.点睛:本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

根据正方形的性质可得出面积为100、36的正方形的边长,再利用勾股定理即可求出字母A所代表的正方形的边长,此题得解.【详解】面积是100的正方形的边长为10,面积是36的正方形的边长为6,∴字母A所代表的正方形的边长==1.故答案为:1.本题考查了勾股定理以及正方形的性质,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.10、【解析】分析:根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.详解:∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O==α,∠A4B4O=α,∴∠AnBnO=α,∴A2018B2018O=.故答案为:.点睛:本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的外角的度数,得到分母为2的指数次幂变化,分子不变的规律是解题的关键.11、50°【解析】

已知旋转角为80°,即∠DOB=80°,欲求∠α的度数,必须先求出∠AOB的度数,利用三角形内角和定理求解即可.【详解】解:由旋转的性质知:∠A=∠C=110°,∠D=∠B=40°;根据三角形内角和定理知:∠AOB=180°﹣110°﹣40°=30°;已知旋转角∠DOB=80°,则∠α=∠DOB﹣∠AOB=50°.故答案为50°.此题主要考查的是旋转的性质,同时还涉及到三角形内角和定理的运用,难度不大.12、50°.【解析】

根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.13、6【解析】

根据二次根式被开方数为非负数可得关于a的不等式组,继而可求得a、b的值,代入a+b进行计算即可得解.【详解】由题意得:,解得:a=5,所以:b=1,所以a+b=6,故答案为:6.本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.三、解答题(本大题共5个小题,共48分)14、3【解析】

根据AD⊥BC得出∠ADB=∠ADC=90°,然后得出RT△BDF和RT△ADC全等,从而得出AD=BD=3,然后根据Rt△ABD的勾股定理求出AB的长度.【详解】∵AD⊥BC∴∠ADB=∠ADC=90°在RT△BDF和RT△ADC中,∴RT△BDF≌RT△ADC(HL)∴AD=BD=3在RT△ABD中,AB2=AD2+BD2AB2=32+32AB=3考点:(1)、三角形全等;(2)、勾股定理15、(1)10;60;(2)中位数为21、众数为20;(3)奖励标准应定为21万元,理由见解析【解析】试题分析:(1)由统计图中的信息可知:不称职的有2人,占总数的6.7%,由此可得总人数为:2÷6.7%=30(人);而条形统计图中的信息显示:优秀的有3人,称职的有18人,由此可得3÷30×100%=10%,18÷30×100%=60%,即a=10,b=60;(2)由条形统计图可知,这组数据的众数为20,中位数是按大小排列后的第15和16个数据的平均数,而由第15和16个数据都是21可知中位数是21;(3)由题意可知:奖励标准应该定为21万元,因为由(2)可知,这组数据的中位数是21万,因此按要使一半左右的人获得奖励,应该以中位数作为奖励的标准.试题解析:(1)由统计图中信息可得:该商场进入统计的营业员总数=2÷6.7%=30(人);∵优秀的有3人,∴a%=3÷30×100%=10%,∴a=10;∵称职的有18人,∴b%=18÷30×100%=60%,∴b=60;(2)由条形统计图可知,这组数据的众数为20;由条件下统计图可知,这30个数据按从小到大排列后,第15个数和第16个数都是21,∴这组数据的中位数为21;(3)∵要使一半左右的人获得奖励,∴奖励标准应该以中位数为准,∴奖励标准应定为21万元.点睛:这是一道综合应用条形统计图和扇形统计图中的信息来解决相关问题的统计图,解题的关键是弄清两幅统计图中数据间的对应关系,再进行细心计算即可.16、(1)2.4(2)(3)8.4【解析】

(1)直接观察图像,即可得出t=2时,y=2.4,即通话2分钟需付的电话费是2.4元;(2)通过观察图像,t≥3时,y与t之间的关系是一次函数,由图像得知B、C两点坐标,设解析式,代入即可得解;(3)把t=7直接代入(2)中求得的函数解析式,即可得出y=8.4,即通话7分钟需付的电话费是8.4元.【详解】解:(2)由图得B(3,2.4),C(5,5.4)设直线BC的表达式为,解得∴直线BC的表达式为.(3)把x=7代入解得y=8.4此题主要考查一次函数图像的性质和解析式的求解,熟练运用即可得解.17、(1)40人一分钟内平均每人跳绳102;;(2)6(1)班能得到学校奖励.【解析】

(1)根据加权平均数的计算公式进行计算即可;(2)根据评分标准计算总积分,然后与1比较大小.【详解】解:(1)6(1)班40人中跳绳的平均个数为100+=102个,答:40人一分钟内平均每人跳绳102;(2)依题意得:(4×6+5×10+6×5)×3-(-2×6-1×12)×(-1)=288>1.所以6(1)班能得到学校奖励.本题考查了加权平均数,正负数在实际生活中的应用.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.18、(1)D;(2)5,5;(3)这名学生每人植树量的平均数5.3;(4)估计这260名学生共植树1378棵.【解析】

(1)利用总人数乘对应的百分比求解即可;(2)根据众数、中位数的定义即可直接求解;(3)直接列式即可求得调查的20人的平均数;(4)用平均数乘以总人数260即可.【详解】(1)D错误,理由:20×10%=2≠3;(2)由题意可知,植树5棵人数最多,故众数为5,共有20人植树,其中位数是第10、11人植树数量的平均数,即(5+5)=5,故中位数为5;(3)这名学生每人植树量的平均数(4×4+5×8+6×6+7×2)÷20=5.3,(4)估计这260名学生共植树5.3×260=1378(棵).答:估计这260名学生共植树1378棵本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.一、填空题(本大题共5个小题,每小题4分,共20分)19、21(答案不唯一,满足即可)【解析】

若关于x的一元二次方程有两个实数根,所以△=b2-4ac≥0,建立关于b与c的不等式,求得它们的关系后,写出一组满足题意的b,c的值.【详解】解:∵关于x的一元二次方程有两个实数根,

∴△=b2-4ac≥0,

即b2-4×c=b2-c≥0,

∴b=2,c=1能满足方程.故答案为2,1(答案不唯一,满足即可).本题考查根的判别式,掌握方程有两个实数根的情况是△≥0是解题的关键.20、【解析】

首先利用勾股定理求得BC的长,然后根据折叠的性质可以得到AE=EC,则△ABE的周长=AB+BC,即可求解.【详解】解:在直角△ABC中,BC==8cm,

∵将折叠,使点与点重合,∵AE=EC,

∴△ABE的周长=AB+BE+AE=AB+BE+EC=AB+BC=6+8=14(cm).

故答案是:14cm.本题考查了轴对称(折叠)的性质以及勾股定理,正确理解折叠中相等的线段是关键.21、1.【解析】

先移项,然后利用平方差公式和因式分解法进行因式分解,则易求a+b的值.【详解】由a2﹣a=b2﹣b,得a2﹣b2﹣(a﹣b)=2,(a+b)(a﹣b)﹣(a﹣b)=2,(a﹣b)(a+b﹣1)=2.∵a≠b,∴a+b﹣1=2,则a+b=1.故答案是:1.本题考查了因式分解的应用.注意:a≠b条件的应用,该条件告诉我们a﹣b≠2,所以必须a+b﹣1=2.22、【解析】

把点A(2,2)代入得k=4得到。可求B()由函数图像可知的解集是:【详解】解:把点A(2,2)代入得:∴k=4∴当y=3时∴∴B()由函数图像可知的解集是:本题考查了反比例函数和一次函数的交点问题,掌握求反比例函数解析式,及点的坐标,以及由函数求出不等式的解集.23、1【解析】

直接根据内角和公式计算即可求解.【详解】(n﹣2)•110°=1010°,解得n=1.故答案为1.主要考查了多边形的内角和公式.多边形内角和公式:.二、解答题(本大题共3个小题,共30分)24、(1);k=-1.(2)把菱形ABCD沿y轴的正方向平移10个单位后,点C落在双曲线上;(3)x<-5.【解析】试题分析:(1)根据勾股定理求得AB的长,进而求得D、C的坐标,然后根据待定系数法即可求得直线CD的函数表达式及k的值;(2)把x=-2代入y2=-(x<0)得,y=-=10,即可求得平移的距离;(3)根据函数的图象即可求得使y1>y2的自变量x的取值范围.试题解析:(1)∵点A的坐标为(0,4),点B的坐标为(3,0),∴AB==5,∵四边形ABCD是菱形,∴AD=BC=AB=5,∴D(-5,4),C(-2,0).∴,解得∴直线CD的函数表达式为y1=-x-,∵D点在反比例函数的图象上,∴4=,∴k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论