版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页江苏省无锡市宜兴市宜城环科园教联盟2024年数学九上开学达标检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于()A.20 B.18 C.16 D.142、(4分)直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为()A. B. C. D.3、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2 D.34、(4分)已知y是x的一次函数,下表中列出了部分对应值:x-101y1m-1则m等于()A.-1 B.0 C. D.25、(4分)2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是()A.这50名学生是总体的一个样本B.每位学生的体考成绩是个体C.50名学生是样本容量D.650名学生是总体6、(4分)如图,顺次连接四边形ABCD各边的中点的四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AC=BD C.AC⊥BD D.AB=CD7、(4分)下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数8、(4分)下列各式中与是同类二次根式的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某市出租车的收费标准如下:起步价5元,即千米以内(含千米)收费元,超过千米的部分,每千米收费元.(不足千米按千米计算)求车费(元)与行程(千米)的关系式________.10、(4分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.当轿车到达乙地后,马上沿原路以CD段速度返回,则货车从甲地出发_______小时后与轿车相遇(结果精确到0.01)11、(4分)反比例函数图像上三点的坐标分别为A(-1,y1),B(1,y2),C(3,y3),则y1,y2,,y3的大小关系是_________。(用“>”连接)12、(4分)当x≤2时,化简:=________13、(4分)如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,正方形的对角线、相交于点,,.(1)求证:四边形是正方形.(2)若,则点到边的距离为______.15、(8分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.16、(8分)化简并求值:,其中.17、(10分)解下列方程组和不等式组.(1);(2).18、(10分)先化简,然后从中选择所有合适的整数作为的值分别代入求值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第5幅图中有______个正方形.20、(4分)写出一个比2大比3小的无理数(用含根号的式子表示)_____.21、(4分)若一组数据1,2,x,4的众数是1,则这组数据的方差为_____.22、(4分)如图,矩形纸片中,已知,,点在边上,沿折叠纸片,使点落在点处,连结,当为直角三角形时,的长为______.23、(4分)某一时刻,身高1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得旗杆的影长是5m,则该旗杆的高度是_________m.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系xOy中,点A(,0),点B(0,1),直线EF与x轴垂直,A为垂足。(1)若线段AB绕点A按顺时针方向旋转到AB′的位置,并使得AB与AB′关于直线EF对称,请你画出线段AB所扫过的区域(用阴影表示);(2)计算(1)中线段AB所扫过区域的面积。25、(10分)如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD交于点F,且AF=DF,①求证:AB=DE;②若AB=3,BF=5,求△BCE的周长.26、(12分)计算:(1)(2)(3)(4).
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
由已知条件易证AB=AE=AD-DE=BC-DE=4,结合AB=CD,AD=BC=6即可求得平行四边形ABCD的周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC=6,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=AD-DE=6-2=4,∴CD=AB=4,∴平行四边形ABCD的周长=2×(4+6)=20.故选A.点睛:“由BE平分∠ABC结合AD∥BC得到∠ABE=∠CBE=∠AEB,从而证得AB=AE=AD-DE=BC-DE=4”是解答本题的关键.2、C【解析】
根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.【详解】设直角三角形的两条直角边分别为x、y,
斜边上的中线为d,
斜边长为2d,
由勾股定理得,,
直角三角形的面积为S,
,
则,
则,,
这个三角形周长为:,
故选C.
【点睛】本题考查了勾股定理的应用,解题的关键是根据直角三角形的两条直角边长分别是a,b,斜边长为c,得出.3、C【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【详解】∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故选C.此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.4、B【解析】
由于一次函数过点(-1,1)、(1,-1),则可利用待定系数法确定一次函数解析式,然后把(0,m)代入解析式即可求出m的值.【详解】设一次函数解析式为y=kx+b,把(−1,1)、(1,−1)代入解得,所以一次函数解析式为y=−x,把(0,m)代入得m=0.故答案为:B.此题考查待定系数法求一次函数解析式,解题关键在于运用一次函数图象上点的坐标特征求解m.5、B【解析】
因为这50名学生的体考成绩是总体的一个样本,所以选项A错误;因为每位学生的体考成绩是个体,所以选项B正确;因为50是样本容量,样本容量是个数字,没有单位,所以选项C错误;因为这650名学生的体考成绩是总体,所以选项D错误.故选B.6、C【解析】
根据矩形的判定定理(有一个角为直角的平行四边形是矩形).先证四边形EFGH是平行四边形,要使四边形EFGH为矩形,需要∠EFG=90度.由此推出AC⊥BD.【详解】依题意得:四边形EFGH是由四边形ABCD各边中点连接而成,连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,所以四边形EFGH是平行四边形,要使四边形EFGH为矩形,根据矩形的判定(有一个角为直角的平行四边形是矩形),当AC⊥BD时,∠EFG=∠EHG=90度,四边形EFGH为矩形.故选C.本题考查了矩形的判定定理,难度一般.矩形的判定定理:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.7、C【解析】
直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.8、C【解析】
根据同类二次根式的定义一一判断选择即可.【详解】A.与不是同类二次根式,故不符合题意;B.与不是同类二次根式,故不符合题意;C.与是同类二次根式,符合题意;D.与不是同类二次根式,故不符合题意;综上答案选C.本题考查的是同类二次根式的定义与二次根式的化简,能够化简选项中的二次根式是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
本题是一道分段函数,当和是由收费与路程之间的关系就可以求出结论.【详解】由题意,得
当时,
;
当时,
,∴,故答案为:.本题考查了分段函数的运用,解答时求出函数的解析式是关键.10、4.68.【解析】
观察图象可求得货车的速度为60千米/时,轿车在CD段的速度为110千米/时,轿车到达乙地时与货车相距30千米,设货车从甲地出发后x小时后再与轿车相遇,根据题意可得方程110(x-4.5)+60(x-4.5)=30,解方程即可求得x的值,由此即可解答.【详解】观察图象可得,货车的速度为300÷5=60(千米/时),轿车在CD段的速度为(300-80)÷(4.5-2.5)=110(千米/时),轿车到达乙地时与货车相距300-60×4.5=30(千米),设货车从甲地出发后x小时后再与轿车相遇,110(x-4.5)+60(x-4.5)=30,解得x=,∴货车从甲地出发后4.68小时后再与轿车相遇.故答案为4.68.本题考查了一次函数的应用,根据图象获取信息是解决问题的关键.11、【解析】
此题可以把点A、B、C的横坐标代入函数解析式求出各纵坐标后再比较大小.【详解】解:当x=-1时,y1=;当x=1时,y2=;当x=3时,y3=;故y1>y3>y2.本题考查反比例函数图象上点的坐标特征,对于此类问题最简单的办法就是将x的值分别代入函数解析式中,求出对应的y再比较大小.也可以画出草图,标出各个点的大致位置坐标,再比较大小.12、2-x【解析】
,∵x≤2,∴原式=2-x.13、(0,1).【解析】试题分析:根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.试题解析:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).考点:坐标与图形变化-旋转.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)1.5.【解析】
(1)首先根据已知条件可判定四边形OCED是平行四边形,然后根据正方形对角线互相平分的性质,可判定四边形OCED是菱形,又根据正方形的对角线互相垂直,即可判定四边形OCED是正方形;(2)首先连接EO,并延长EO交AB于点F,根据已知条件和(1)的结论,可判定EF即为点E到AB的距离,即为EO和OF之和,根据勾股定理,可求出AD和CD,即可得解.【详解】解:(1)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是正方形,∴AC=BD,,∴OC=OD.∴四边形OCED是菱形.∵AC⊥BD,∴∠COD=90°.∴四边形OCED是正方形.(2)解:连接EO,并延长EO交AB于点F,如图所示由(1)中结论可得,OE=CD又∵正方形ABCD,,AD=CD,OF⊥AB∴∴AD=CD=1,∴∴EF即为点E到AB的距离,故答案为1.5.此题主要考查正方形的判定和利用正方形的性质求解线段的长度,熟练运用即可解题.15、证明见解析【解析】试题分析:(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;
(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=GH,AG=DH,计算即可.试题解析:(1)证明:∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC.∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.∵在△ADE和△DCH中,,∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+EG=EH+HD,即GH=ED,∴GH=CH.∴CG=GH.∵AG=EG,∴AG=DH,∴CG+AG=GH+HD,∴CG+AG=(GH+HD),即CG+AG=DG.16、,【解析】
首先进行化简,在代入计算即可.【详解】原式当时,原式本题主要考查根式的化简,注意根式的分母不等为0,这是必考题,必须掌握.17、(1);(2).【解析】
(1)用加减消元法或代入消元法先消去一个未知数,化二元为一元,求解即可;(2)首先求出每个不等式的解集,然后找出它们的公共部分,该公共部分就是不等式组的解集.【详解】解:(1)①-②×2,得,.把代入②,得,.∴原方程组的解为.(2)由①,得,.由②,得,.∴原不等式组的解集为.本题考查的是解二元一次方程组和解一元一次不等式组,熟知加减消元法和代入消元法是解(1)题的关键,熟知不等式的基本性质是解(2)题的关键;对于求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小是空集.18、,.【解析】
将原式括号内两项通分并利用同分母分式的减法法则计算,再将除法运算化为乘法运算,约分后得到最简结果,然后从已知不等式解集中找出合适的整数解代入化简后的式子中,即可求出原式的值.【详解】.不等式中的所有整数为,,0,1,2,要使分式有意义,则,,∴当时,原式.本题考查了分式的化简求值,掌握分式的混合运算法则与分式有意义的条件是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、55【解析】
观察图形,找到正方形的个数与序数之间的关系,从而得出第5幅图中正方形的个数.【详解】解:∵第1幅图中有1个正方形,
第2幅图中有1+4=5个正方形,
第3幅图中有1+4+9=14个正方形,∴第4幅图中有12+22+32+42=30个正方形,第5幅图中有12+22+32+42+52=55个正方形.故答案为:55.本题考查查图形的变化规律,能根据图形之间的变化规律,得出正方形个数与序数之间的规律是解决此题的关键.20、【解析】【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【详解】∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为:.【点睛】本题考查了估算无理数的大小,熟练掌握利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.21、1.5【解析】试题分析:众数是这组数据出现次数最多的数,由此判断x为1,这组数据的平均数是(1+2+1+4)÷4=2,所以方差为,=1.5.故这组数据的方差为1.5.考点:方差计算.22、3或【解析】
分两种情况:①当∠EFC=90°,先判断出点F在对角线AC上,利用勾股定理求出AC,设BE=x,表示出CE,根据翻折变换的性质得到AF=AB,EF=BE,再根据Rt△CEF利用勾股定理列式求解;②当∠CEF=90°,判断四边形ABEF是正方形,根据正方形的性质即可求解.【详解】分两种情况:①当∠EFC=90°,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC=设BE=x,则CE=BC-BE=4-x,由翻折的性质得AF=AB=3,EF=BE=x,∴CF=AC-AF=5-3=2在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4-x)2,解得x=;②当∠CEF=90°,如图2由翻折的性质可知∠AEB=∠AEF=45°,∴四边形ABEF是正方形,∴BE=AB=3,故BE的长为3或此题主要考查矩形的折叠问题,解题的关键是根据图形进行分类讨论.23、20【解析】
试题分析:设该旗杆的高度为xm,根据三角形相似的性质得到同一时刻同一地点物体的高度与其影长的比相等,即有1.6:0.4=x:5,然后解方程即可.解:设该旗杆的高度为xm,根据题意得,1.6:0.4=x:5,解得x=20(m).即该旗杆的高度是20m.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2).【解析】
(1)将线段AB绕点A按顺时针方向旋转到AB′的位置,使B′的坐标为(2,1);(2)利用扇形面积公式求出线段AB所扫过区域的面积即可.【详解】(1)如图所示;(2)∵点A(,0),点B(0,1),∴BO=1,AO=,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024商铺租赁合同附带物业维护及增值服务全面协议6篇
- 2024年度软件许可合同:金融行业大数据分析软件许可及技术支持协议2篇
- 2024年度创业公司股权代持协议3篇
- 2024年度最高额金融科技产品反担保权利质押合同3篇
- 2024年度全国性idc数据中心机房租赁服务合同模板
- 2024年度技术咨询合同:智能制造工厂的规划与实施2篇
- 2024年度校园小卖部商品质量责任合同3篇
- 2024年企业间合法借贷协议书3篇
- 2024年安全生产应急救援物资储备与供应合同3篇
- 2024年成都车辆租赁合同违约责任合同范本3篇
- 地理专业英语词汇
- 2022年《职教法》职业教育解读PPT
- 健康体检中心管理规范
- 血液透析专科操作流程及评分标准
- 印染厂磨毛拉毛安全生产注意事项
- 全国院前急救资源现状调查问卷
- 国家开放大学《管理英语2》边学边练参考答案
- 均苯四甲酸二酐生产技术教材(共70页).ppt
- 材料科学-相场模拟简介ppt课件
- 水利机械台班费用定额
- 关于企业重组业务的税收政策解读与研究--企业特殊(免税)重组的条件
评论
0/150
提交评论