版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省遵义市务川民族中学数学高一上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20132.如果直线l,m与平面满足和,那么必有()A.且 B.且C.且 D.且3.函数的定义域是()A.(-1,1) B.C.(0,1) D.4.若方程的两实根中一个小于,另一个大于,则的取值范围是()A. B.C. D.5.已知函数,则()A.﹣1 B.C. D.36.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则7.=A.- B.C.- D.8.已知,则化为()A. B.C.m D.19.中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是℃,环境温度是℃,则经过分钟后物体的温度℃将满足,其中是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,℃的水应大约冷却()分钟冲泡该绿茶(参考数据:,)A.3 B.3.6C.4 D.4.810.设,则“”是“”的()条件A.必要不充分 B.充分不必要C.既不充分也不必要 D.充要二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.12.已知正四棱锥的高为4,侧棱长为3,则该棱锥的侧面积为___________.13.设集合,,若,则实数的取值范围是________14.若,,三点共线,则实数的值是__________15.据资料统计,通过环境整治.某湖泊污染区域的面积与时间t(年)之间存在近似的指数函数关系,若近两年污染区域的面积由降至.则使污染区域的面积继续降至还需要_______年16.已知是球上的点,,,,则球的表面积等于________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设为平面直角坐标系中的四点,且,,(1)若,求点的坐标及;(2)设向量,,若与平行,求实数的值18.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y19.在平面四边形中(如图甲),已知,且现将平面四边形沿折起,使平面平面(如图乙),设点分别为的中点.(1)求证:平面平面;(2)若三棱锥的体积为,求的长.20.(1)已知是奇函数,求的值;(2)画出函数图象,并利用图象回答:为何值时,方程无解?有一解?有两解.21.已知集合(1)当时,求;(2)若“”是“”充分条件,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为2、A【解析】根据题设线面关系,结合平面的基本性质判断线线、线面、面面的位置关系.【详解】由,则;由,则;由上条件,m与可能平行、相交,与有可能平行、相交.综上,A正确;B,C错误,m与有可能相交;D错误,与有可能相交故选:A3、B【解析】根据函数的特征,建立不等式求解即可.【详解】要使有意义,则,所以函数的定义域是.故选:B4、A【解析】设,根据二次函数零点分布可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】由可得,令,由已知可得,解得,故选:A.5、C【解析】先计算,再代入计算得到答案.【详解】,则故选:【点睛】本题考查了分段函数的计算,意在考查学生的计算能力.6、A【解析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.7、A【解析】.考点:诱导公式8、C【解析】把根式化为分数指数幂进行运算【详解】,.故选:C9、B【解析】根据题意求出k的值,再将θ=80℃,=100℃,=20℃代入即可求得t的值.【详解】由题可知:,冲泡绿茶时水温为80℃,故.故选:B.10、B【解析】根据充分条件与必要条件的概念,可直接得出结果.【详解】若,则,所以“”是“”的充分条件;若,则或,所以“”不是“”的必要条件;因此,“”是“”的充分不必要条件.故选:B【点睛】本题主要考查充分不必要条件的判定,熟记概念即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:12、【解析】由高和侧棱求侧棱在底面射影长,得底面边长,从而可求得斜高,可得侧面积【详解】如图,正四棱锥,是高,是中点,则是斜高,由已知,,则,是正方形,∴,,,侧面积侧故答案为:【点睛】关键点点睛:本题考查求正棱锥的侧面积.在正棱锥计算中,解题关键是掌握四个直角三角形:如解析中图中,正棱锥的几乎所有量在这四个直角三角形中都有反应13、【解析】对于方程,由于,解得集合,由,根据区间端点值的关系列式求得的范围【详解】解:对于,由于,,,;∴∵,集合,∴解得,,则实数的取值范围是故答案为:14、5【解析】,,三点共线,,即,解得,故答案为.15、2【解析】根据已知条件,利用近两年污染区域的面积由降至,求出指数函数关系的底数,再代入求得污染区域将至还需要的年数.【详解】设相隔为t年的两个年份湖泊污染区域的面积为和,则可设由题设知,,,,即,解得,假设需要x年能将至,即,,,解得所以使污染区域的面积继续降至还需要2年.故答案为:216、【解析】由已知S,A,B,C是球O表面上的点,所以,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】(1)设,写出的坐标,利用列式求解点的坐标,再写出的坐标;(2)用坐标表示出与,再根据平行条件的坐标公式列式求解.【详解】(1)设,因为,,,所以,得,则;(2)由题意,,,所以,,因为与平行,所以,解得.18、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得最大值时的x的集合,(2)由五点法作图,列出表格,并画图即可.【小问1详解】令,函数取得最大值,解得,所以此时x集合为.【小问2详解】表格如下:x0y11作图如下,19、(1)证明见解析;(2).【解析】(1)先证明平面又,则平面进而即可证明平面平面;(2)由,结合面积体积公式求解即可【详解】(1)在图乙中,平面平面且平面平面,底面又,且平面而分别是中点,平面又平面平面平面.(2)由(1)可知,平面,设,则.,即.20、(1);(2)时,无解;时,有两个解;或时,有一个解.【解析】(1)由奇函数的定义,,代入即可得出结果.(2)画出函数图象,结合函数图象可得出结果.【详解】(1)为奇函数,,所以(2)函数图象如图,可知时,无解;时,有两个解;或时,有一个解【点睛】本题考查了奇函数的定义,考查了运算求解能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市规划包清工施工合同
- 2024年三人创业项目合伙经营二零二四年度合作协议3篇
- 2024年度建筑工程款委托代付与结算服务合同3篇
- 2024年度冷链物资搬运与储存一体化合同3篇
- 2024特色酒店客房装修设计与施工合同范本3篇
- 2024年度文化艺术内部承包责任制合同2篇
- 2024年安徽省农村电商农民工用工合同2篇
- 2024年度洗煤厂煤炭风险评估租赁合同3篇
- 2024年度不锈钢栏杆行业竞争分析合同3篇
- 2024年度汽车无偿借给影视制作公司道具车辆合同3篇
- 中国文化-古今长安(双语)智慧树知到期末考试答案章节答案2024年西安欧亚学院
- 苏教译林版五年级上学期英语第七单元Unit7《At weekends》测试卷(含答案解析)
- 丝氨酸蛋白酶在代谢性疾病中的作用
- 纪念与象征-空间中的实体艺术 课件-2023-2024学年高中美术人美版(2019)美术鉴赏
- 《交通事故应急预案》课件
- 创伤急救理论知识考试试题及答案
- 创意营造学智慧树知到期末考试答案2024年
- 急诊分诊流程和分诊标准课件
- 新疆的若干历史问题
- 香港大学邀请函
- 成为一名精神科医生的职业规划
评论
0/150
提交评论