2025届重庆市第一中学高二数学第一学期期末综合测试模拟试题含解析_第1页
2025届重庆市第一中学高二数学第一学期期末综合测试模拟试题含解析_第2页
2025届重庆市第一中学高二数学第一学期期末综合测试模拟试题含解析_第3页
2025届重庆市第一中学高二数学第一学期期末综合测试模拟试题含解析_第4页
2025届重庆市第一中学高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市第一中学高二数学第一学期期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是两个数1,9的等比中项,则圆锥曲线的离心率为()A.或 B.或C. D.2.已知点、是双曲线C:的左、右焦点,P是C左支上一点,若直线的斜率为2,且为直角三角形,则双曲线C的离心率为()A.2 B.C. D.3.已知点分别是椭圆的左、右焦点,点P在此椭圆上,,则的面积等于A. B.C. D.4.设太阳光线垂直于平面,在阳光下任意转动棱长为一个单位的立方体,则它在平面上的投影面积的最大值是()A.1 B.C. D.5.设α,β是两个不同的平面,m,n是两条不重合的直线,下列命题中为真命题的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么6.已知为定义在R上的偶函数函数,且在单调递减.若关于的不等式在上恒成立,则实数m的取值范围是()A. B.C. D.7.在中,角、、的对边分别是、、,若.则的大小为()A. B.C. D.8.在平面直角坐标系中,线段的两端点,分别在轴正半轴和轴正半轴上滑动,若圆上存在点是线段的中点,则线段长度的最小值为()A.4 B.6C.8 D.109.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C与相等 D.10.已知实数x,y满足,则的取值范围是()A. B.C. D.11.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的运用,最具代表性的便是园林中的门洞.如图,某园林中的圆弧形挪动高为2.5m,底面宽为1m,则该门洞的半径为()A.1.2m B.1.3mC.1.4m D.1.5m12.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数在处取得极小值,则a=__________14.已知圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,则圆心的轨迹方程为______,若点,,则周长的最小值为______15.如图,在四棱锥中,是边长为4的等边三角形,四边形ABCD是等腰梯形,,,,若四棱锥的体积为24,则四棱锥外接球的表面积是___________.16.函数仅有一个零点,则实数的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=ax3+bx2﹣3x在x=﹣1和x=3处取得极值.(1)求a,b的值(2)求f(x)在[﹣4,4]内的最值.18.(12分)已知函数(Ⅰ)讨论函数的极值点的个数(Ⅱ)若,,求的取值范围19.(12分)在①,②是与的等比中项,③这三个条件中任选一个,补充在下面的问题中,并解答问题:已知数列{}的前n项和为,,且满足___(1)求数列{}的通项公式;(2)求数列{}前n项和注:如果选择多个条件分别解答,按第一个解答计分20.(12分)设p:关于x的不等式有解,q:.(1)若p为真命题,求实数m的取值范围;(2)若为假命题,为真命题,求实数m的取值范围.21.(12分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△BDC′的位置,如图2所示,并使得平面BDC′⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=.图1图2(1)求平面FBC′与平面FBA夹角的余弦值;(2)在线段AD上是否存在一点M,使得⊥平面?若存在,求的值;若不存在,说明理由.22.(10分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意可知,当时,根据椭圆离心率公式,即可求出结果;当时,根据双曲线离心率公式,即可求出结果.【详解】因为是两个数1,9的等比中项,所以,所以,当时,圆锥曲线,其离心率为;当时,圆锥曲线,其离心率为;综上,圆锥曲线的离心率为或.故选:A.2、B【解析】根据双曲线的定义和勾股定理利用即可得离心率.【详解】∵直线的斜率为2,为直角三角形,∴,又,∴,.∵,即,∴故选:B.3、B【解析】根据椭圆标准方程,可得,结合定义及余弦定理可求得值,由及三角形面积公式即可求解.【详解】椭圆则,所以,则由余弦定理可知代入化简可得,则,故选:B.【点睛】本题考查了椭圆的标准方程及几何性质的简单应用,正弦定理与余弦定理的简单应用,三角形面积公式的用法,属于基础题.4、C【解析】确定正方体投影面积最大时,是投影面与平面AB'C平行,从而求出投影面积的最大值.【详解】设正方体投影最大时,是投影面与平面AB'C平行,三个面的投影为两个全等的菱形,其对角线为,即投影面上三条对角线构成边长为的等边三角形,如图所示,所以投影面积为故选:C5、C【解析】AB.利用两平面的位置关系判断;CD.利用面面平行的判定定理判断;【详解】A.如果,,n∥β,那么α,β相交或平行;故错误;B.如果,,,那么α,β垂直,故错误;C.如果m∥n,,则,又,那么α∥β,故C正确;D错误,故选:C6、C【解析】由条件利用函数的奇偶性和单调性,可得对恒成立,转化为且对恒成立.求得相应的最大值和最小值,从而求得的范围【详解】定义在上的函数为偶函数,且在上递减,在上单调递增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,则,,,,在上递增,上递减,令,当时,,在上递减,故可知,解得,所以实数m的取值范围是故选:C7、B【解析】利用余弦定理结合角的范围可求得角的值,再利用三角形的内角和定理可求得的值.【详解】因为,则,则,由余弦定理可得,因为,则,故.故选:B.8、C【解析】首先求点的轨迹,将问题转化为两圆有交点,即根据两圆的位置关系,求参数的取值范围.【详解】设,,的中点为,则,故点的轨迹是以原点为圆心,为半径的圆,问题转化为圆与圆有交点,所以,,即,解得:,所以线段长度的最小值为.故选:C9、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D10、B【解析】实数,满足,通过讨论,得到其图象是椭圆、双曲线的一部分组成的图形,借助图象分析可得的取值就是图象上一点到直线距离范围的2倍,求出切线方程根据平行直线距离公式算出最小值,和最大值的极限值即可得出答案.【详解】因为实数,满足,所以当时,,其图象是位于第一象限,焦点在轴上的双曲线的一部分(含点),当时,其图象是位于第四象限,焦点在轴上的椭圆的一部分,当时,其图象不存在,当时,其图象是位于第三象限,焦点在轴上的双曲线的一部分,作出椭圆和双曲线的图象,其中图象如下:任意一点到直线的距离所以,结合图象可得的范围就是图象上一点到直线距离范围的2倍,双曲线,其中一条渐近线与直线平行,通过图形可得当曲线上一点位于时,取得最小值,无最大值,小于两平行线与之间的距离的倍,设与其图像在第一象限相切于点,由因为或(舍去)所以直线与直线的距离为此时,所以的取值范围是故选:B【点睛】三种距离公式:(1)两点间的距离公式:平面上任意两点间的距离公式为;(2)点到直线的距离公式:点到直线的距离;(3)两平行直线间的距离公式:两条平行直线与间的距离.11、B【解析】设半径为R,根据垂径定理可以列方程求解即可.【详解】设半径为R,,解得,化简得.故选:B.12、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】对函数求导,根据极值点得到或,讨论的不同取值,利用导数的方法判定函数单调性,验证极值点,即可得解.【详解】由可得,因为函数在处取得极小值,所以,解得或,若,则,当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;所以函数在处取得极小值,符合题意;当时,,当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;所以函数在处取得极大值,不符合题意;综上:.故答案为:2.【点睛】思路点睛:已知函数极值点求参数时,一般需要先对函数求导,根据极值点求出参数,再验证所求参数是否符合题意即可.14、①.②.【解析】设,圆半径为,进而根据题意得,,进而得其轨迹方程为双曲线,再根据双曲线的定义,将周长转化为求的最小值,进而求解.【详解】解:如图1,因为圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,所以,,所以中点,则,,所以,故设,圆半径为,则,,,所以,即所以圆心的轨迹方程为,表示双曲线,焦点为,,如图2,连接,由双曲线的定义得,即,所以周长为,因为,所以周长的最小值为故答案为:;.15、##【解析】根据球的截面圆圆心与球心的连线垂直截面可确定垂直平面ABCD,构造直角三角形求解球的半径即可得解.【详解】如图,分别取BC,AD的中点,E,连接PE,,,.因为是边长为4的等边三角形,所以.因为四边形ABCD是等腰梯形,,,,所以,.因为四棱锥的体积为24,所以,所以.因为E是AD的中点,所以.因为,所以平面ABCD.因为,所以四边形ABCD外接圆的圆心为,半径.设四棱锥外接球的球心为O,连接,OP,OB,过点О作,垂足为F.易证四边形是矩形,则,.设四棱锥外接球的半径为R,则,即,解得,故四棱锥外接球的表面积是.故答案为:16、【解析】根据题意求出函数的导函数并且通过导数求出原函数的单调区间,进而得到原函数的极值,因为函数仅有一个零点,所以结合函数的性质可得函数的极大值小于或极小值大于,即可得到答案.【详解】解:由题意可得:函数,所以,令,则或,令,则,所以函数的单调增区间为和,减区间为所以当时函数有极大值,当时函数有极小值,,因为函数仅有一个零点,,所以或,解得或.所以实数的取值范围是故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先对函数求导,由题意可得=3ax2+2bx﹣3=0的两个根为﹣1和3,结合方程的根与系数关系可求,(2)由(1)可求,然后结合导数可判断函数的单调性,进而可求函数的最值.【详解】解:(1)=3ax2+2bx﹣3,由题意可得=3ax2+2bx﹣3=0的两个根为﹣1和3,则,解可得a,b=-1,(2)由(1),易得f(x)在,单调递增,在上单调递减,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【点睛】本题考查利用极值求函数的参数,以及利用导数求函数的最值问题,属于中档题18、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三种情况讨论,求得函数的单调性,结合极值的概念,即可求解;(Ⅱ)由不等式,转化为当时,不等式恒成立,设,利用导数求得函数的单调性与最值,即可求解.【详解】(Ⅰ)由题意,函数的定义域为,且,当时,令,解得,令,解得或,故在上单调递减,在,上单调递增,所以有一个极值点;当时,令,解得或,令,得,故在,上单调递减,在上单调递增,所以有一个极值点;当时,上单调递增,在上单调递减,所以没有极值点综上所述,当时,有个极值点;当时,没有极值点.(Ⅱ)由,即,可得,即当时,不等式恒成立,设,则设,则因为,所以,所以在上单调递增,所以,所以在上单调递减,在上单调递增,所以,所以所以的取值范围是.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题3、根据恒成求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.19、(1);(2).【解析】(1)选①,可得数列为等差数列,求出,由,可得数列的通项公式为选②是与的等比中项,可得,由,可得,从而利用累乘法求得数列的通项公式为选③,由,可得,则数列为等差数列,从而求出通项公式(2)由(1)知,求出,利用错位相减求和法求出小问1详解】选①.因为,,所以是首项为1,公差为1的等差数列则,从而当时,,经检验,当时,也符合上式.所以选②.因为是与的等比中项所以,当时,,两式相减得,整理得,所以,经检验,也符合上式,所以选③.由题设,得,两式相减,得,整理,得,因为.所以,所以是首项为1,公差为2的等差数列,所以【小问2详解】由(1)知,,所以,所以,则两式相减,得,所以20、(1)(2)【解析】根据题意,解出p和q里面m的范围即可求解﹒其中有解,则≥0﹒【小问1详解】p为真命题时,,解得,所以m的取值范围是;【小问2详解】q为真命题时,即,解得,所以q为假命题时,或,由(1)知,p为假时,因为为假命题,为真命题,所以p,q为一真一假,当p真q假时,且“或”,解得;当p假q真时,,解得;综上:m的取值范围是21、(1)(2)不存在,理由见解析【解析】(1)利用垂直关系,以点为原点,建立空间直角坐标系,分别求平面和平面的法向量和,利用公式,即可求解;(2)若满足条件,,利用向量的坐标表示,判断是否存在点满足.【小问1详解】∵,E为BD的中点∴CE⊥BD,又∵平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论