广州市重点中学2025届高二上数学期末质量跟踪监视模拟试题含解析_第1页
广州市重点中学2025届高二上数学期末质量跟踪监视模拟试题含解析_第2页
广州市重点中学2025届高二上数学期末质量跟踪监视模拟试题含解析_第3页
广州市重点中学2025届高二上数学期末质量跟踪监视模拟试题含解析_第4页
广州市重点中学2025届高二上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广州市重点中学2025届高二上数学期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角2.已知数列的前项和满足,记数列的前项和为,.则使得的值为()A. B.C. D.3.正方体的表面积为,则正方体外接球的表面积为(

)A. B.C. D.4.点M在圆上,点N在直线上,则|MN|的最小值是()A. B.C. D.15.若不等式在上有解,则的最小值是()A.0 B.-2C. D.6.若函数在上为增函数,则a的取值范围为()A. B.C. D.7.曲线的离心率为()A. B.C. D.8.黄金矩形是宽()与长()的比值为黄金分割比的矩形,如图所示,把黄金矩形分割成一个正方形和一个黄金矩形,再把矩形分割出正方形.在矩形内任取一点,则该点取自正方形内的概率是A. B.C. D.9.现有4本不同的书全部分给甲、乙、丙3人,每人至少一本,则不同的分法有()A.12种 B.24种C.36种 D.48种10.若方程表示焦点在y轴上的双曲线,则实数m的取值范围为()A. B.C. D.且11.数列中,,,则()A.32 B.62C.63 D.6412.已知圆:,点,则点到圆上点的最小距离为()A.1 B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆,圆,则两圆的公切线条数是___________.14.已知斜率为1的直线经过椭圆的左焦点,且与椭圆交于,两点,若椭圆上存在点,使得的重心恰好是坐标原点,则椭圆的离心率______.15.设正方形的边长是,在该正方形区域内随机取一个点,则此点到点的距离大于的概率是_____16.直线与两坐标轴相交于,两点,则线段的垂直平分线的方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆经过点,且离心率为(1)求椭圆C的标准方程;(2)已知点A,B是椭圆C的上,下顶点,点P是直线上的动点,直线PA与椭圆C的另一交点为E,直线PB与椭圆C的另一交点为F.证明:直线EF过定点18.(12分)已知.(1)当,时,求中含项的系数;(2)用、表示,写出推理过程19.(12分)已知数列满足,,且成等比数列(1)求的值和的通项公式;(2)设,求数列的前项和20.(12分)函数,.(1)讨论函数的单调性;(2)若在上恒成立,求实数的取值范围.21.(12分)已知圆,圆.(1)试判断圆C与圆M的位置关系,并说明理由;(2)若过点的直线l与圆C相切,求直线l的方程.22.(10分)为了了解高二段1000名学生一周课外活动情况,随机抽取了若干学生的一周课外活动时间,时间全部介于10分钟与110分钟之间,将课外活动时间按如下方式分成五组:第一组,第二组,…,第五组.按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右前3个组的频率之比为3∶8∶19,且第二组的频数为8(1)求第一组数据的频率并计算调查中随机抽取了多少名学生的一周课外活动时间;(2)求这组数据的平均数

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C2、B【解析】由,求得,得到,结合裂项法求和,即可求解.【详解】数列的前项和满足,当时,;当时,,当时,适合上式,所以,则,所以.故选:B.3、B【解析】由正方体表面积求得棱长,再求得正方体的对角线长,即为外接球的直径,从而可得球表面积【详解】设正方体棱长为,由得,正方体对角线长,所以其外接球半径为,球表面积为故选:B4、C【解析】根据题意可知圆心,又由于线外一点到已知直线的垂线段最短,结合点到直线的距离公式,即可求出结果.【详解】由题意可知,圆心,半径为,所以圆心到的距离为,所以的最小值为.故选:C.5、D【解析】将题设条件转化为在上有解,然后求出的最大值即可得解.【详解】不等式在上有解,即为在上有解,设,则在上单调递减,所以,所以,即,故选:D.【点睛】本题主要考查二次不等式能成立问题,可以选择分离参数转化为最值问题,也可以进行分情况讨论.6、C【解析】求出函数的导数,要使函数在上为增函数,要保证导数在该区间上恒正即可,由此得到不等式,解得答案.详解】由题意可知,若在递增,则在恒成立,即有,则,故选:C.7、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.8、C【解析】设矩形的长,宽分别为,所以,把黄金矩形分割成一个正方形和一个黄金矩形,所以,设矩形的面积为,正方形的面积为,设在矩形内任取一点,则该点取自正方形内的概率是,则,故本题选C.【详解】本题考查了几何概型,考查了运算能力.9、C【解析】先把4本书按2,1,1分为3组,再全排列求解.【详解】先把4本书按2,1,1分为3组,再全排列,则有种分法,故选:C10、A【解析】根据双曲线定义,且焦点在y轴上,则可直接列出相关不等式.【详解】若方程表示焦点在y轴上的双曲线,则必有:,且解得:故选:11、C【解析】把化成,故可得为等比数列,从而得到的值.【详解】数列中,,故,因为,故,故,所以,所以为等比数列,公比为,首项为.所以即,故,故选C.【点睛】给定数列的递推关系,我们常需要对其做变形构建新数列(新数列的通项容易求得),常见的递推关系和变形方法如下:(1),取倒数变形为;(2),变形为,也可以变形为;12、C【解析】写出圆的圆心和半径,求出距离的最小值,再结合圆外一点到圆上点的距离最小值的方法即可求解.【详解】由圆:,得圆,半径为,所以,所以点到圆上点的最小距离为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先把圆的一般方程化为标准方程,进一步求出两圆的位置关系,可得两圆的公切线条数.【详解】解:由圆,可得:,可得其圆心为,半径为;由,可得,可得其圆心为,半径为2;所以可得其圆心距为:,可得:,故两圆相交,其公切线条数为,故答案为:2.【点睛】本题主要考查两圆的位置关系及两圆公切线条数的判断,属于中档题.14、【解析】设点,,坐标分别为,则根据题意有,分别将点,,的坐标代入椭圆方程得,然后联立直线与椭圆方程,利用韦达定理得到和的值,代入得到关于的齐次式,然后解出离心率.【详解】设,,坐标分别为,因为的重心恰好是坐标原点,则,则,代入椭圆方程可得,其中,所以……①因为直线的斜率为,且过左焦点,则的方程为:,联立方程消去可得:,所以,……②所以……③,将②③代入①得,从而.故答案为:【点睛】本题考查椭圆的离心率求解问题,难度较大.解答时,注意,,三点坐标之间的关系,注意韦达定理在解题中的运用.15、【解析】先求出正方形的面积,然后求出动点到点的距离所表示的平面区域的面积,最后根据几何概型计算公式求出概率.【详解】正方形的面积为,如下图所示:阴影部分的面积为:,在正方形内,阴影外面部分的面积为,则在该正方形区域内随机取一个点,则此点到点的距离大于的概率是.【点睛】本题考查了几何概型的计算公式,正确求出阴影部分的面积是解题的关键.16、【解析】由直线的方程求出直线的斜率以及,两点坐标,进而可得线段的垂直平分线的斜率以及线段的中点坐标,利用点斜式即可求解.【详解】由直线可得,所以直线的斜率为,所以线段的垂直平分线的斜率为,令可得;令可得;即,,所以线段的中点坐标为,所以线段的垂直平分线的方程为,整理得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)根据题意,列出的方程组,通过解方程组,即可求出答案.(2)法一:设,,;当时,根据点的坐标写出直线PA的方程,与椭圆方程联立,可求出点的坐标;同理可求出点的坐标,然后即可求出直线EF的方程,从而证明直线EF过定点.法二:首先根据时直线EF的方程为,可判断出直线EF过的定点M必在y轴上,设为;然后同方法一,求出点,的坐标,根据,即可求出的值.【小问1详解】由题意,知,解得,所以椭圆C的标准方程为【小问2详解】法一:设,,,当时,直线PA的方程为,由,得解得,所以.所以同理可得所以直线EF的斜率为,所以直线EF的方程为,整理得,所以直线EF过定点当时,点E,F在y轴上,EF的方程为,显然过点综上,直线EF过定点法二:当点P在y轴上时,E,F分别与B,A重合,直线EF的方程为,若直线EF过定点M,则M必在y轴上,可设当点P不在y轴上时,设,,,则直线PA的方程为,由,得,解得,所以,所以,同理可得,所以,因为E,F,M三点共线,所以,所以,整理得,因为,所以,解得,即所以直线EF过定点18、(1)(2),过程见解析【解析】(1)写出函数的解析式,利用二项式定理可求得函数中含项的系数;(2)利用错位相减法化简函数的解析式,求出解析式中含项的系数,再结合组合数公式化简可得结果.【小问1详解】解:当,时,,的展开式通项为,此时,函数中含项的系数之和为.【小问2详解】解:因为,①则,②①②得,所以,,而为中含项的系数,而函数中含项的系数也可视为中含项的系数,故,且,故.19、(1);;(2)【解析】(1)由于,所以可得,再由成等比数列,列方程可求出,从而可求出的通项公式;(2)由(1)可得,然后利用错位相减法求【详解】解:(1)数列{an}满足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比数列,所以,整理得d=1或2(1舍去)故an+2=an+2,所以n奇数时,an=n,n为偶数时,an=n﹣1所以数列{an}的通项公式为(2)由于,所以所以T2n=b1+b2+...+b2n=﹣20×12+20×22﹣22×32+22×42+...+[﹣22n﹣2•(2n﹣1)2]+22n﹣2•(2n)2,=20×(22﹣12)+22×(42﹣32)+...+22n﹣2•[(2n)2﹣(2n﹣1)2]=20×3+22×7+...+22n﹣2•(4n﹣1)①,所以,②,①﹣②得:﹣3T2n=20×3+22×4+...+22n﹣2×4﹣22n×(4n﹣1),=3+4×﹣22n×(4n﹣1),=,所以20、(1)答案见解析;(2).【解析】(1)求出函数的定义域为,求得,分、、三种情况讨论,分析导数的符号变化,由此可得出函数的单调递增区间和递减区间;(2)构造函数,由题意可知恒成立,对实数分和两种情况讨论,利用导数分析函数在区间上的单调性,验证是否成立,由此可得出实数的取值范围.【详解】(1)函数的定义域为,.(i)当时,,函数在上单调递增;(ii)当时,令得.若,则;若,则.①当时,,函数在上单调递增;②当时,,当时,,函数单调递增;当时,,函数单调递减;综上,可得,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减;(2)设,,则.当时,单调递增,则.所以,函数在上单调递增,且.当时,,于是,函数在上单调递增,恒成立,符合题意;当时,由于,,,所以,存在,使得.当时,,函数单调递减;当时,,函数单调递增.故,不符合题意,综上所述,实数的取值范围是.【点睛】本题考查利用导数求解函数的单调区间,同时也考查了利用导数研究函数不等式恒成立问题,考查分类讨论思想的应用,属于难题.21、(1)圆C与圆M相交,理由见解析(2)或【解析】(1)利用圆心距与半径的关系即可判断结果;(2)讨论,当直线l的斜率不存在时则方程为,当直线l的斜率存在时,设其方程为,利用圆心到直线的距离等于半径计算即可得出结果.【小问1详解】把圆M的方程化成标准方程,得,圆心为,半径.圆C的圆心为,半径,因为,所以圆C与圆M相交,【小问2详解】①当直线l的斜率不存在时,直线l的方程为到圆心C距离为2,满足题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论