2025届辽宁省北票市尹湛纳希高级中学高二数学第一学期期末学业水平测试试题含解析_第1页
2025届辽宁省北票市尹湛纳希高级中学高二数学第一学期期末学业水平测试试题含解析_第2页
2025届辽宁省北票市尹湛纳希高级中学高二数学第一学期期末学业水平测试试题含解析_第3页
2025届辽宁省北票市尹湛纳希高级中学高二数学第一学期期末学业水平测试试题含解析_第4页
2025届辽宁省北票市尹湛纳希高级中学高二数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省北票市尹湛纳希高级中学高二数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.32.已知抛物线的焦点为,在抛物线上有一点,满足,则的中点到轴的距离为()A. B.C. D.3.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. B.C. D.4.执行如图所示的程序框图,若输出的的值为,则输入的的值可能为()A.96 B.97C.98 D.995.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.6.阿基米德曾说过:“给我一个支点,我就能撬动地球”.他在做数学研究时,有一个有趣的问题:一个边长为2的正方形内部挖了一个内切圆,现在以该内切圆的圆心且平行于正方形的一边的直线为轴旋转一周形成几何体,则该旋转体的体积为()A. B.C. D.7.如图,在三棱锥S—ABC中,点E,F分别是SA,BC的中点,点G在棱EF上,且满足,若,,,则()A. B.C. D.8.已知椭圆的左右焦点分别为,直线与C相交于M,N两点(其中M在第一象限),若M,,N,四点共圆,且直线倾斜角不小于,则椭圆C的离心率e的取值范围是()A. B.C. D.9.已知一个乒乓球从米高的高度自由落下,每次落下后反弹的高度是原来高度的倍,则当它第8次着地时,经过的总路程是()A. B.C. D.10.过点与直线平行的直线的方程是()A. B.C. D.11.椭圆的左右两焦点分别为,,过垂直于x轴的直线交C于A,B两点,,则椭圆C的离心率是()A. B.C. D.12.过点,且斜率为2的直线方程是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,点为抛物线上一点,以为圆心的圆经过原点,且与抛物线的准线相切,切点为,线段交抛物线于点,则___________.14.已知,求_____________.15.已知,点在轴上,且,则点的坐标为____________.16.如图,在长方体中,,,则直线与平面所成角的正弦值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,且存在两个极值点、,其中.(1)求实数的取值范围;(2)若恒成立,求最小值.18.(12分)设全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”充分条件,求a的取值范围;(2)若“x∈A”是“x∈B”的必要条件,求a的取值范围.19.(12分)求适合下列条件的圆锥曲线的标准方程(1)中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线;(2)椭圆的中心在原点,焦点在轴上,离心率等于,且它的一个顶点恰好是抛物线的焦点;(3)经过点抛物线20.(12分)已知.(1)求在上的单调递增区间;(2)已知锐角内角,,的对边长分别是,,,若,.求面积的最大值.21.(12分)共享电动车(sharedev)是一种新的交通工具,通过扫码开锁,实现循环共享.某记者来到中国传媒大学探访,在校园喷泉旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率为,若从这些共享电动车中任意抽取3辆.(1)求取出的3辆共享电动车中恰好有一辆是橙色的概率;(2)求取出的3辆共享电动车中橙色的电动车的辆数X的分布列与数学期望.22.(10分)已知函数,.(1)若,求的最大值;(2)若,求证:有且只有一个零点.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.2、A【解析】设点,利用抛物线的定义求出的值,可求得点的横坐标,即可得解.【详解】设点,易知抛物线的焦点为,由抛物线的定义可得,得,所以,点的横坐标为,故点到轴的距离为.故选:A.3、B【解析】绘制圆柱的轴截面如图所示,由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.4、D【解析】根据程序框图得出的变换规律后求解【详解】当时,,当时,,当时,,当时,,可得输出的T关于t的变换周期为4,而,故时,输出的值为,故选:D5、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.6、B【解析】根据题意,结合圆柱和球的体积公式进行求解即可.【详解】由题意可知:该旋转体的体积等于底面半径为,高为的圆柱的体积减去半径为的球的体积,即,故选:B7、D【解析】利用空间向量的加、减运算即可求解.详解】由题意可得故选:D8、B【解析】设椭圆的半焦距为c,由椭圆的中心对称性和圆的性质得以为直径的圆与椭圆C有公共点,则有以,再根据直线倾斜角不小于得,由椭圆的定义得,由此可求得椭圆离心率的范围.【详解】解:设椭圆的半焦距为c,由椭圆的中心对称性和M,,N,四点共圆得,四边形必为一个矩形,即以为直径的圆与椭圆C有公共点,所以,所以,所以,因为直线倾斜角不小于,所以直线倾斜角不小于,所以,化简得,,因为,所以,所以,,又,因为,所以,所以,所以,所以.故选:B.9、C【解析】根据等比数列的求和公式求解即可.【详解】从第1次着地到第2次着地经过的路程为,第2次着地到第3次着地经过的路程为,组成以为首项,公比为的等比数列,所以第1次着地到第8次着地经过的路程为,所以经过的总路程是.故答案为:C.10、A【解析】根据题意利用点斜式写出直线方程即可.【详解】解:过点的直线与直线平行,,即.故选:A.11、C【解析】由题可得为等边三角形,可得,即得.【详解】∵过垂直于x轴的直线交椭圆C于A,B两点,,∴为等边三角形,由代入,可得,∴,所以,即,又,解得.故选:C.12、A【解析】由直线点斜式计算出直线方程.【详解】因为直线过点,且斜率为2,所以该直线方程为,即.故选【点睛】本题考查了求直线方程,由题意已知点坐标和斜率,故选用点斜式即可求出答案,较为简单.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析可知为等腰三角形,可得出,将点的坐标代入抛物线的方程,可求得的值,可得出抛物线的方程以及点的坐标,求出点的坐标,设点,其中,分析可知,利用平面向量共线的坐标表示求出的值,进而可求得结果.【详解】由抛物线的定义结合已知条件可知,则为等腰三角形,易知抛物线的焦点为,故,即点,因为点在抛物线上,则,解得,所以,抛物线的方程为,故点、,因为以点为圆心,为半径的圆与直线相切于点,则,设点,其中,,,由题意可知,则,整理可得,解得,因此,.故答案为:.14、【解析】根据导数的定义即可求解.【详解】,所以,故答案为:.15、【解析】设P(0,0,z),由|PA|=|PB|,得1+4+(z−1)2=4+4+(z−2)2,解得z=3,故点P的坐标为(0,0,3).16、##【解析】过作,垂足为,则平面,则即为所求角,从而可得结果.【详解】依题意,画出图形,如图,过作,垂足为,可知点H为中点,由平面,可得,又所以平面,则即为所求角,因为,,所以,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)存在两个极值点,等价于其导函数有两个相异零点;(2)适当构造函数,并注意与关系,转化为函数求最大值问题,即可求得的范围.【小问1详解】(),,函数存在两个极值点、,且,关于的方程,即在内有两个不等实根,令,,即,,实数的取值范围是.【小问2详解】函数在上有两个极值点,由(1)可得,由,得,则,,,,,,,,令,则且,令,,,再设,则,,,即在上是减函数,(1),,在上是增函数,(1),,恒成立,恒成立,,的最小值为.【点睛】关键点点睛:本题考查导函数,函数的单调性,最值,不等式证明,考查学生分析解决问题的能力,解题的关键是将恒成立,转化为恒成立,化简,令,则化为,然后构造函数,利用导数求出其最大值即可,属于较难题18、(1)(2)【解析】(1)由“”是“”的充分条件,可得,从而可得关于的不等式组,解不等式组可得答案;(2)“”是“”的必要条件,可得,然后分和两种情况求解即可【小问1详解】由题意得到A=[1,5],由“x∈A”是“x∈B”的充分条件可得A⊆B,则,解得,故实数a的取值范围是.【小问2详解】由“x∈A”是“x∈B”的必要条件可得B⊆A,当时,2-a>1+2a,即a<时,满足题意,当时,即a≥时,则,解得≤a≤1.综上a≤1,故实数a的取值范围是.19、(1)(2)(3)或【解析】(1)由已知求得,再由等轴双曲线的性质可求得则,由此可求得双曲线的方程;(2)由已知求得抛物线的焦点为,得出椭圆的,再根据椭圆的离心率求得,由此可得出椭圆的方程;(3)设抛物线的标准方程为:或,代入点求解即可.【小问1详解】解:对于直线,令,得,所以,则,所以,所以中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线的方程为;【小问2详解】解:由得抛物线的焦点为,所以对于椭圆,,又椭圆的离心率为,所以,解得,所以椭圆的方程;【小问3详解】解:因为点在第三象限,所以满足条件的抛物线的标准方程可以是:或,代入点得或,解得或,所以经过点的抛物线的方程为或20、(1);(2).【解析】(1)首先根据三角函数恒等变换得到,再求其单调增区间即可.(2)根据得到,根据余弦定理和基本不等式得到,结合三角形面积公式计算即可.【小问1详解】由题意.由,得,令,得,所以在上的单调递增区间是【小问2详解】因为,所以,得,又C是锐角,所以,由余弦定理:,得,所以,且当时等号成立所以,故面积最大值为21、(1);(2)分布列见解析,数学期望为.【解析】(1)先求出两种颜色的电动车各有多少辆,然后根据超几何分布求概率的方法即可求得答案;(2)先确定X的所有可能取值,进而求出概率并列出分布列,然后根据期望公式求出答案.【小问1详解】因为从10辆共享电动车中任取一辆,取到橙色的概率为0.4,所以橙色的电动车有4辆,荧光绿的电动车有6辆.记A为“从中任取3辆共享单车中恰好有一辆是橙色”,则.【小问2详解】随机变量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论