版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省西安市第二十五中学高一数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的最小值为()A. B.2C. D.42.已知,,则()A. B.C. D.3.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.4.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x45.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.26.已知,,,则的大小关系是()A. B.C. D.7.设全集,,,则()A. B.C. D.8.函数,则函数()A.在上是增函数 B.在上是减函数C.在是增函数 D.在是减函数9.若用二分法逐次计算函数在区间内的一个零点附近的函数值,所得数据如下:0.510.750.6250.562510.4620.155则方程的一个近似根(精度为0.1)为()A.0.56 B.0.57C.0.65 D.0.810.已知函数,下列区间中包含零点的区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.点关于直线的对称点的坐标为______.12.袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2球,则2球颜色相同的概率等于________13.如图,二面角的大小是30°,线段,与所成的角为45°,则与平面所成角的正弦值是__________14.已知点在角的终边上,则___________;15.将函数的图象向左平移个单位长度得到函数的图象,若使得,且的最小值为,则_________.16.已知集合,若,求实数的值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某果农从经过筛选(每个水果的大小最小不低于50克,最大不超过100克)的10000个水果中抽取出100个样本进行统计,得到如下频率分布表:级别大小(克)频数频率一级果50.05二级果三级果35四级果30五级果20合计100请根据频率分布表中所提供的数据,解得下列问题:(1)求的值,并完成频率分布直方图;(2)若从四级果,五级果中按分层抽样的方法抽取5个水果,并从中选出2个作为展品,求2个展品中仅有1个是四级果的概率;(3)若将水果作分级销售,预计销售的价格元/个与每个水果的大小克关系是:,则预计10000个水果可收入多少元?18.如图,在几何体中,,均与底面垂直,且为直角梯形,,,,,分别为线段,的中点,为线段上任意一点.(1)证明:平面.(2)若,证明:平面平面.19.已知函数.(1)利用“五点法”完成下面表格,并画出函数在区间上的图像.(2)解不等式.20.已知函数过定点,函数的定义域为.(Ⅰ)求定点并证明函数的奇偶性;(Ⅱ)判断并证明函数在上的单调性;(Ⅲ)解不等式.21.已知的内角满足,若,且,满足:,,,为,的夹角,求
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据给定条件利用均值不等式直接计算作答.【详解】因为,则,当且仅当,即时取“=”,所以的最小值为.故选:C2、B【解析】应用同角关系可求得,再由余弦二倍角公式计算.【详解】因,所以,所以,所以.故选:B.【点睛】本题考查同角间的三角函数关系,考查余弦的二倍角公式.求值时要注意角的取值范围,以确定函数值的正负.3、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C4、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.5、B【解析】将写成分段函数,画出函数图象数形结合,即可求得结果.【详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【点睛】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.6、A【解析】利用对数函数和指数函数的性质求解【详解】解:∵,∴,∵,∴,∵,∴,即,∴故选:A7、B【解析】先求出集合B的补集,再求【详解】因为,,所以,因为,所以,故选:B8、C【解析】根据基本函数单调性直接求解.【详解】因为,所以函数在是增函数,故选:C9、B【解析】利用零点存在性定理和精确度要求即可得解.【详解】由表格知在区间两端点处的函数值符号相反,且区间长度不超过0.1,符合精度要求,因此,近似值可取此区间上任一数故选:B10、C【解析】根据函数零点的存在性定理,求得,即可得到答案.【详解】由题意,函数,易得函数为单调递减函数,又由,所以,根据零点的存在定理,可得零点的区间是.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设点关于直线的对称点为,由垂直的斜率关系,和线段的中点在直线上列出方程组即可求解.【详解】设点关于直线的对称点为,由对称性知,直线与线段垂直,所以,所以,又线段的中点在直线上,即,所以,由,所以点关于直线的对称点的坐标为:.故答案为:.12、【解析】把4个球编号,用列举法写出所有基本事件,并得出2球颜色相同的事件,计数后可计算概率【详解】2个红球编号为,2个白球编号为,则依次取2球的基本事件有:共6个,其中2球颜色相同的事件有共2个,所求概率为故答案为:13、【解析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,由CD⊥l,AC⊥l得,l⊥面ACD,可得AD⊥l,因此,∠ADC为二面角α−l−β的平面角,∠ADC=30°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角设AD=2x,则Rt△ACD中,AC=ADsin30°=x,Rt△ABD中,∴Rt△ABC中,故答案为.点睛:求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.14、##【解析】根据三角函数得定义即可的解.【详解】解:因为点在角的终边上,所以.故答案为:.15、【解析】根据三角函数的图形变换,求得,根据,不妨设,求得,,得到则,根据题意得到,即可求解.【详解】将函数的图象向左平移个单位长度,可得,又由,不妨设,由,解得,即,又由,解得,即则,因为的最小值为,可得,解得或,因为,所以.故答案为:16、【解析】根据题意,可得或,然后根据结果进行验证即可.【详解】由题可知:集合,所以或,则或当时,,不符合集合元素的互异性,当时,,符合题意所以【点睛】本题考查元素与集合的关系求参数,考查计算能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的值为10,的值为0.35;作图见解析(2)(3)元【解析】(1)根据样本总数为可求,由频数样本总数可求;计算出各组频率,再计算出频率/组距即可画出频率分布直方图.(2)根据分层抽样可得抽取的4级有个,抽取5级果有个,设三个四级果分别记作:,二个五级果分别记作:,利用古典概型的概率计算公式即可求解.(3)计算出100个水果的收入即可预计10000个水果可收入.【详解】(1)的值为10,的值为0.35(2)四级果有30个,五级果有20个,按分层抽样的方法抽取5个水果,则抽取的4级果有个,5级果有个.设三个四级果分别记作:,二个五级果分别记作:,从中任选二个作为展品的所有可能结果是,共有10种,其中两个展品中仅有一个是四级果的事件为,包含共个,所求的概率为.(3)100个水果的收入为(元)所以10000个水果预计可收入(元).【点睛】本题考查了频率分布表、频率分布直方图、分层抽样以及古典概型的概率公式,用样本估计总体,属于基础题.18、(1)详见解析;(2)详见解析.【解析】(1)由题可得,进而可得平面,因为,,所以四边形为平行四边形,即,从而得出平面,平面平面,进而证得平面(2)由题可先证明四边形为正方形,连接,则,再证得平面,进而证得平面平面.【详解】证明:(1)因平面,平面,所以.因为平面,平面,所以平面.因为,,所以四边形为平行四边形,所以.因为平面,平面,所以平面.因为,所以平面平面,因为平面,所以平面.(2)因为,所以为等腰直角三角形,则.因为为的中点,且四边形为平行四边形,所以,故四边形为正方形.连接,则.因为平面,平面,所以.因为,平面,平面,所以平面.因为分别,的中点,所以,则平面.因为平面,所以平面平面.【点睛】本题主要考查证明线面平行问题以及面面垂直问题,属于一般题19、(1)表格、图象见解析;(2),.【解析】(1)根据正弦函数的性质,在坐标系中描出上或的点坐标,再画出其图象即可.(2)由正弦函数的性质得,,即可得解集.【小问1详解】由正弦函数的性质,上的五点如下表:0000函数图象如下:【小问2详解】由,即,故,,所以,,故不等式解集为,.20、(Ⅰ)定点为,奇函数,证明见解析;(Ⅱ)在上单调递增,证明见解析;(Ⅲ).【解析】(Ⅰ)根据解析式可求得定点为,即可得解析式,根据奇函数的定义,即可得证;(Ⅱ)利用定义法即可证明的单调性;(Ⅲ)根据的单调性和奇偶性,化简整理,可得,根据函数的定义域,列出不等式组,即可求得答案.【详解】(Ⅰ)函数过定点,定点为,,定义域为,.函数为奇函数.(Ⅱ)上单调递增.证明:任取,且,则.,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年技术顾问合同:技术支持与服务期限
- 产品质量事故应急预案
- 2024-2025学年新教材高中政治 第三课 第二框 中国特色社会主义的创立、发展和完善说课稿 部编版第一册
- 2024秋七年级英语下册 Module 3 Making plans Unit 2 We're going to cheer the players说课稿 (新版)外研版
- 《起重作业培训》课件
- 2024年度股权转让与投资合同协议书2篇
- 二零二四年福州市医疗用车租赁合同3篇
- 2024年度钢管扣件行业标准制定与推广合同2篇
- 高等数学(第五版)课件 4.4.2未定式∞型极限问题
- 2024年度航空公司食堂食材供应合同2篇
- 吸收放散实验课件
- 3.1《让小车运动起来》优质课件
- 新形势下,如何做好一人一事思想政治工作
- 《基于核心素养高中物理实验教学实施素质教育的研究》结题总结报告
- 行政人事部工作分析表
- 英语漫谈胶东海洋文化知到章节答案智慧树2023年威海海洋职业学院
- 航空母舰优秀课件
- 2023年芒果TV春季校园招聘笔试参考题库附带答案详解
- 共享中国知到章节答案智慧树2023年上海工程技术大学
- 中国十大传世名画课件
- mbti性格测试题及答案(十篇)
评论
0/150
提交评论