版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市南开实验学校2025届数学高二上期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知不等式只有一个整数解,则m的取值范围是()A. B.C. D.2.若抛物线焦点与椭圆的右焦点重合,则的值为A. B.C. D.3.命题“”为真命题一个充分不必要条件是()A. B.C. D.4.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B.C. D.5.等比数列的各项均为正数,且,则()A.5 B.10C.4 D.6.经过点且与直线垂直的直线方程为()A. B.C. D.7.下列函数是偶函数且在上是减函数的是A. B.C. D.8.已知某地区7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,从中随机选一人,则此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.037459.已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A. B.C. D.10.若方程表示圆,则实数m的取值范围为()A B.C. D.11.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.12.平行直线:与:之间的距离等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.以正方体的对角线的交点为坐标原点O建立右手系的空间直角坐标系,其中,,,则点的坐标为______14.如图,SD是球O的直径,A、B、C是球O表面上的三个不同的点,,当三棱锥的底面是边长为3的正三角形时,则球O的半径为______.15.抛物线的焦点到准线的距离等于__________.16.在长方体中,设,,则异面直线与所成角的大小为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知菱形的顶点和所在直线的方程为.(1)求对角线所在直线的一般方程;(2)求所在直线的一般方程.18.(12分)已知圆C的圆心在直线上,且经过点和(1)求圆C的标准方程;(2)若过点的直线l与圆C交于A,B两点,且,求直线l的方程19.(12分)如图,在四棱锥中,底面是正方形,侧面底面,为侧棱上一点(1)求证:;(2)若为中点,平面与侧棱于点,且,求四棱锥的体积20.(12分)已知定点,动点满足,设点的轨迹为.(1)求轨迹的方程;(2)若点分别是圆和轨迹上的点,求两点间的最大距离.21.(12分)已知直线,圆.(1)若l与圆C相切,求切点坐标;(2)若l与圆C交于A,B,且,求的面积.22.(10分)已知圆C:(1)若过点的直线l与圆C相交所得的弦长为,求直线l的方程;(2)若P是直线:上的动点,PA,PB是圆C的两条切线,A,B是切点,求四边形PACB面积的最小值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】依据导函数得到函数的单调性,数形结合去求解即可解决.【详解】不等式只有一个整数解,可化为只有一个整数解令,则当时,,单调递增;当时,,单调递减,则当时,取最大值,当时,恒成立,的草图如下:,,则若只有一个整数解,则,即故不等式只有一个整数解,则m的取值范围是故选:B2、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D3、B【解析】求解命题为真命题的充要条件,再利用集合包含关系判断【详解】命题“”为真命题,则≤1,只有是的真子集,故选项B符合题意故选:B4、D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5、A【解析】利用等比数列的性质及对数的运算性质求解.【详解】由题有,则=5.故选:A6、A【解析】根据点斜式求得正确答案.【详解】直线的斜率为,经过点且与直线垂直的直线方程为,即.故选:A7、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】根据题意,依次分析选项:对于A,为一次函数,不是偶函数,不符合题意;对于B,,,为奇函数,不是偶函数,不符合题意;对于C,,为二次函数,是偶函数且在上是减函数,符合题意;对于D,,,为奇函数,不是偶函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于基础题8、D【解析】设出事件,利用全概率公式进行求解.【详解】用事件A,B分别表示随机选1人为男性或女性,用事件C表示此人恰是色盲,则,且A,B互斥,故故选:D9、C【解析】由题意,设,直线方程为,则由点到直线的距离公式求出点到直线的距离,再联立直线与抛物线方程,由韦达定理及弦长公式求出,进而可得,结合即可得答案.【详解】解:因为抛物线的性质:在抛物线上任意一点处的切线方程为,设,所以在点处的切线方程为,在点B处的切线方程为,因为两条切线都经过点,所以,,所以直线的方程为,即,点到直线的距离为,联立直线与抛物线方程有,消去得,由得,,由韦达定理得,所以弦长,所以,整理得,即,解得,又所以.故选:C.10、D【解析】根据,解不等式即可求解.【详解】由方程表示圆,则,解得.所以实数m的取值范围为.故选:D11、A【解析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【详解】=,故选:A.12、B【解析】先由两条直线平行解出,再按照平行线之间距离公式求解.【详解】,则:,即,距离为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据已知点的坐标,确定出坐标系即可得【详解】如图,由已知得坐标系如图所示,轴过正方形的对角线交点,轴过中点,轴过中点,因此可知坐标为故答案为:14、【解析】由三棱锥是正三棱锥,利用正弦定理得出三角形外接圆的半径,进而求出,再由余弦定理得出球O的半径.【详解】因为,所以平面,三棱锥是正三棱锥,设为三角形外接圆的圆心,则在上,连接,,由得出,所以,在中,,即,解得,则球O的半径为.故答案为:15、【解析】先将抛物线方程,转化为标准方程,求得焦点坐标,准线方程即可.【详解】因为抛物线方程是,转化为标准方程得:,所以抛物线开口方向向右,焦点坐标准线方程为:,所以焦点到准线的距离等于.故答案为:【点睛】本题主要考查抛物线的标准方程,还考查了理解辨析的能力,属于基础题.16、##【解析】建立空间直角坐标系,用向量法即可求出异面直线与所成的角.【详解】以为原点,所在直线分别为轴,轴,轴,建立空间直角坐标系,则,所以,因为,所以,即,所以异面直线与所成的角为.故答案为:90°.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)首先求的中点,再利用垂直关系求直线的斜率,即可求解;(2)首先求点的坐标,再求直线的斜率,求得直线的斜率,利用点斜式直线方程,即可求解.【小问1详解】由和得:中点四边形为菱形,,且中点,对角线所在直线方程为:,即:.【小问2详解】由,解得:,,,,直线的方程为:,即:.18、(1)(2)或【解析】(1)点和的中垂线经过圆心,两直线联立方程得圆心坐标,再利用两点间距离公式求解半径.(2)已知弦长,求解直线方程,分类讨论斜率是否存在.小问1详解】点和的中点为,,所以中垂线的,利用点斜式得方程为,联立方程得圆心坐标为,所以圆C的标准方程为.【小问2详解】当过点的直线l斜率不存在时,直线方程为,此时弦长,符合题意.当过点的直线l斜率存在时,设直线方程为,化简得,弦心距,所以,解得,所以直线方程为.综上所述直线方程为或.19、(1)证明见解析(2)【解析】(1)利用面面垂直的性质定理可得出平面,再利用线面垂直的性质可得出;(2)分析可知为的中点,平面,计算出梯形的面积,利用锥体的体积公式可求得四棱锥的体积【小问1详解】证明:因为四边形为正方形,则,因为侧面底面,平面平面,平面,所以平面,又平面,所以.【小问2详解】解:因为,平面,平面,所以,平面,因为平面,平面平面,所以,所以,,则,所以,四边形是直角梯形,又是中点,所以,,所以,由平面,平面,所以,从而,正三角形中,是中点,,即,,所以平面,因为,所以.20、(1)(2)【解析】(1)设动点,根据条件列出方程,化简求解即可;(2)设,求出圆心到轨迹上点的距离,配方求最值即可得解.【小问1详解】设动点,则,,,又,∴,化简得,即,∴动点的轨迹E的方程为.【小问2详解】设,圆心到轨迹E上的点的距离∴当时,,∴.21、(1)(2)【解析】(1)求出直线的定点,再由定点在圆上得出切点坐标;(2)由(1)知,证明为直角三角形,求出,,最后由三角形的面积公式求出的面积.【详解】(1)圆可化为直线可化为,由解得即直线过定点,由于,则点在圆上因为l与圆C相切,所以切点坐标为(2)因为l与圆C交于A,B,所以点如下图所示,与相交于点,由以及圆的对称性可知,点为的中点,且由,则直线的方程为圆心到直线的距离为,即直线与圆相切即,则因为,所以【点睛】关键点睛:在第一问中,关键是先确定直线过定点,再由定点在圆上,从而确定切点的坐标.22、(1)或.(2)8【解析】(1)先判断当斜率不存在时,不满足条件;再判断当斜率存在时,设利用垂径定理列方程求出k,即可求出直线方程;(2)过P作圆C的两条切线,切点分别为A、B,连结CA、CB,得到.判断出当时,最小,四边形PACB面积取得最小值.利用点到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网技术服务合同范本模板
- 手动工具配件购销合同
- 二零二四年汽车4S店续租赁合同
- 包含运费的2024年度沙子运输合同3篇
- 2024年度光伏设备出口合同2篇
- 2024年度分包工程进度奖金合同2篇
- 二零二四年度广告制作合同签订流程及合同标的
- 二零二四年数据中心建设租赁合同2篇
- 2024年度上海长宁区地产买卖合同3篇
- 二零二四年度艺人经纪合同模板3篇
- 院感暴发演练脚本
- 北师大版九年级物理全一册电子课本教材
- 2024-2025学年五年级语文上学期期末素质测试试题一新人教版
- 2024年政务服务办事员(初级)鉴定理论试题库资料(浓缩500题)
- 企业数字化转型背景下供应链协同管理优化方案
- 新大象版六年级上册科学全册知识点 (超全)
- 2024年东南亚集装箱班轮运输市场深度研究及预测报告
- 部编版(2024)一年级语文上册第7课《两件宝》精美课件
- 怎样做一名合格的护士课件
- DL∕T 5157-2012 电力系统调度通信交换网设计技术规程
- 2024-2030年中国野营房市场行情监测与前景运行状况分析研究报告
评论
0/150
提交评论