版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽皖江名校联盟2025届高一上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若a,b是实数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件2.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b其中真命题的序号是()A.①② B.③C.①③ D.②3.设,,则A. B.C. D.4.“对任意,都有”的否定形式为()A.对任意,都有B.不存在,都有C.存在,使得D.存在,使得5.已知集合,集合,则集合A. B.C. D.6.已知,则()A. B.7C. D.17.若,则的值为A. B.C. D.8.已知,,则a,b,c的大小关系为A. B.C. D.9.函数()A. B.C. D.10.函数对于定义域内任意,下述四个结论中,①②③④其中正确的个数是()A.4 B.3C.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.在△ABC中,,面积为12,则=______12.已知函数的定义域为R,,且函数为偶函数,则的值为________,函数是________函数(从“奇”、“偶”、“非奇非偶”、“既奇又偶”中选填一个).13.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”.双曲余弦函数,就是一种特殊的悬链线函数,其函数表达式为,相应的双曲正弦函数的表达式为.设函数,若实数m满足不等式,则m的取值范围为___________.14.已知正数、满足,则的最大值为_________15.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________16.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,AB是圆柱OO1的一条母线,BC是底面的一条直径,D是圆О上一点,且AB=BC=5,CD=3(1)求该圆柱的侧面积;(2)求点B到平面ACD的距离18.(1)计算:.(2)化简:.19.如图,是平面四边形的对角线,,,且.现在沿所在的直线把折起来,使平面平面,如图.(1)求证:平面;(2)求点到平面的距离.20.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记.(1)试将污水净化管道总长度(即的周长)表示为的函数,并求出定义域;(2)问当取何值时,污水净化效果最好?并求出此时管道的总长度.(提示:.)21.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上(1)求点C的坐标;(2)求△ABC的面积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由对数函数单调性即可得到二者之间的逻辑关系.【详解】由可得;但是时,不能得到.则是的必要不充分条件故选:B2、D【解析】因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;故选D3、D【解析】利用对数运算法则即可得出【详解】,,,,则.故选D.【点睛】本题考查了对数的运算法则,考查了计算能力,属于基础题4、D【解析】全称命题的否定是特称命题,据此得到答案.【详解】全称命题的否定是特称命题,则“对任意,都有”的否定形式为:存在,使得.故选:D.【点睛】本题考查了全称命题的否定,属于简单题.5、C【解析】故选C6、A【解析】利用表示,代入求值.【详解】,即,.故选:A7、C【解析】由题意求得,化简得,再由三角函数的基本关系式,联立方程组,求得,代入即可求解.【详解】由,整理得,所以,又由三角函数的基本关系式,可得由解得,所以.故选C.【点睛】本题主要考查了三角函数的基本关系式的化简求值问题,其中解答中熟记三角函数的基本关系式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】利用指数函数与对数函数的单调性即可得出【详解】解:,,又,故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题9、A【解析】由于函数为偶函数又过(0,0),排除B,C,D,所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.10、B【解析】利用指数的运算性质及指数函数的单调性依次判读4个序号即可.【详解】,①正确;,,②错误;,由,且得,故,③正确;由为减函数,可得,④正确.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用面积公式即可求出sinC.使用二倍角公式求出cos2C【详解】由题意,在中,,,面积为12,则,解得∴故答案为【点睛】本题考查了三角形的面积公式,二倍角公式在解三角形中的应用,其中解答中应用三角形的面积公式和余弦的倍角公式,合理余运算是解答的关键,着重考查了运算与求解能力,属于基础题12、①.7②.奇【解析】利用函数的奇偶性以及奇偶性定义即可求解.【详解】函数为偶函数,由,则,所以,所以,,定义域为,定义域关于原点对称.因为,所以,所以函数为奇函数.故答案为:7;奇13、【解析】先判断为奇函数,且在R上为增函数,然后将转化为,从而有,进而可求出m的取值范围【详解】由题意可知,的定义域为R,因为,所以为奇函数.因为,且在R上为减函数,所以由复合函数的单调性可知在R上为增函数.又,所以,所以,解得.故答案为:.14、【解析】利用均值不等式直接求解.【详解】因为且,所以,即,当且仅当,即时,等号成立,所以的最大值为.故答案为:.15、或【解析】设所求直线方程为,将点代入上式可得或.考点:直线的方程16、①.②.【解析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【点睛】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用圆柱的侧面积公式计算出侧面积.(2)利用等体积法求得到平面的距离.【小问1详解】圆柱的底面半径为,高为,所以圆柱的侧面积为.【小问2详解】是圆的直径,所以,,.根据圆柱的几何性质可知,由于,所以平面,所以.,,设到平面的距离为,则,即.18、(1);(2)【解析】(1)根据分数指数幂及对数的运算法则计算可得;(2)利用诱导公式及特殊值的三角函数值计算可得;【详解】解:(1)(2)19、(1)见解析;(2).【解析】(1)由平面平面,平面平面,且平面,且,根据线面垂直的判定定理可得平面;(2)取的中点,连.由,可得,又平面,所以,又,所以平面,因此就是点到平面的距离,在中,,,所以.试题解析:(1)证明:因为平面平面平面平面,平面,且,所以平面(2)取的中点,连.因为,所以,又平面,所以,又,所以平面,所以就是点到平面的距离,在中,,,所以.所以是点到平面的距离是.【方法点晴】本题主要考查、线面垂直的判定定理及面面垂直的性质定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20、(1),定义域为.(2)当或时所铺设的管道最短,为米.【解析】(1)如图,因为都是直角三角形,故可以得到,也就是,其中.(2)可变形为,令后,则有,其中,故取的最大值米.【详解】(1).由于,,所以,故.管道的总长度,定义域为.(2).设,则,由于,所以.因为在内单调递减,于是当时,取的最大值米.(此时或).答:当或时所铺设的管道最短,为米.【点睛】在三角变换中,注意之间有关系,如,,三者中知道其中一个,必定可以求出另外两个.21、(1)(–5,–4)(2)【解析】(1)设点,根据题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版八年级物理下册《7.3重力》同步测试题含答案
- 苏教版一年级上学期语文教案
- 浙江省2024年初中学业水平考试模拟试卷数学附答案
- 可持续发展视角下的绿色餐饮营销
- 高一化学巩固练习:配制一定物质的量浓度的溶液基础
- 2024高中地理第2章区域可持续发展第3节流域综合治理与开发-以田纳西河流域为例学案湘教版必修3
- 2024高中语文第5单元庄子蚜第4课尊生练习含解析新人教版选修先秦诸子蚜
- 2024高中语文第六单元文无定格贵在鲜活第30课自主赏析子路曾皙冉有公西华侍坐课时作业含解析新人教版选修中国古代诗歌散文欣赏
- 2024高考化学一轮复习专练34金属的腐蚀与防护含解析新人教版
- 2024高考化学一轮复习第一部分考点22化学反应速率及其影响因素强化训练含解析
- 常用静脉药物溶媒的选择
- 当代西方文学理论知到智慧树章节测试课后答案2024年秋武汉科技大学
- 2024年预制混凝土制品购销协议3篇
- 2024-2030年中国高端私人会所市场竞争格局及投资经营管理分析报告
- GA/T 1003-2024银行自助服务亭技术规范
- 《消防设备操作使用》培训
- 新交际英语(2024)一年级上册Unit 1~6全册教案
- 2024年度跨境电商平台运营与孵化合同
- 2024年电动汽车充电消费者研究报告-2024-11-新能源
- 湖北省黄冈高级中学2025届物理高一第一学期期末考试试题含解析
- 氧气吸入法操作并发症预防及处理规范草稿
评论
0/150
提交评论